

Texts in Computer Science

Series Editors

Orit Hazzan , Faculty of Education in Technology and Science, Technion—Israel
Institute of Technology, Haifa, Israel

Frank Maurer, Department of Computer Science, University of Calgary, Calgary,
Canada

https://orcid.org/0000-0002-8627-0997

Titles in this series now included in the Thomson Reuters Book Citation Index!
‘Texts in Computer Science’ (TCS) delivers high-quality instructional

content for undergraduates and graduates in all areas of computing and information
science, including core theoretical/foundational as well as advanced applied topics.
TCS books should be reasonably self-contained and aim to provide students with
modern and clear accounts of topics ranging across the computing curriculum.
As a result, the books are ideal for semester courses or for individual self-study
in cases where people need to expand their knowledge. All texts are authored by
established experts in their fields, reviewed internally and by the series editors, and
provide numerous examples, problems, and other pedagogical tools; many contain
fully worked solutions.

The TCS series is comprised of high-quality, self-contained books that have
broad and comprehensive coverage and are generally in hardback format and
sometimes contain color. For undergraduate textbooks that are likely to be
more brief and modular in their approach, Springer offers the flexibly designed
Undergraduate Topics in Computer Science series, to which we refer potential
authors.

Ben Stephenson

The Python Workbook
A Brief Introduction with Exercises and
Solutions

Third Edition

Ben Stephenson
Department of Computer Science
University of Calgary
Calgary, AB, Canada

ISSN 1868-0941 ISSN 1868-095X (electronic)
Texts in Computer Science
ISBN 978-3-031-84559-8 ISBN 978-3-031-84560-4 (eBook)
https://doi.org/10.1007/978-3-031-84560-4

1st edition: © Springer International Publishing Switzerland 2014
2nd and 3rd editions: © Springer Nature Switzerland AG 2019, 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/978-3-031-84560-4

To my wife, Flora, for more than 20 fantastic
years of marriage, and many more to come.
To my sons, Jonathan and Andrew, who were
both in a hurry to enter the world. I love you
all.

Preface

I believe that computer programming is a skill that is best learned by doing. While
it is valuable to read about programming, and to watch a teacher create a pro-
gram at the front of a classroom, it is far more important to spend time at the
keyboard solving problems and putting the concepts you have been introduced to
into practice. This book was written with this principle in mind. The majority of
its pages are dedicated to exercises and their solutions, with only a few pages at
the beginning of each chapter that concisely introduce the necessary concepts.

There are 212 exercises in this book, which span a variety of academic dis-
ciplines and everyday situations. A few of the exercises are classical computer
science problems, but most of them offer the opportunity to tackle problems from
other fields of study and the world around you. Each exercise that you complete
will strengthen your understanding of the Python programming language, improve
your programming abilities, and allow you to tackle subsequent programming
challenges more effectively.

Solutions to approximately half of the exercises are provided in the second half
of this book. If you become stuck on an exercise, a quick peek at my solution may
help you work through your problem without requiring assistance from someone
else. Many of the solutions include brief annotations that explain the approach
used to solve the problem or highlight a specific point of Python syntax. You will
find these annotations in shaded boxes, making it easy to distinguish them from
the solutions themselves.

I hope that you will take the time to compare your solutions with mine, even
when you arrive at your solution without encountering any problems. Performing
this comparison may reveal a flaw in your program, or help you become familiar
with a technique that you could have used to solve the problem more easily. The
solutions that I have provided also demonstrate good programming style, includ-
ing appropriate comments, meaningful variable names, and minimal use of magic
numbers. I encourage you to use good programming style when creating your
solutions, so that they compute the correct result while also being clear, easy to
understand, and amenable to future updates.

The length of my solution has been included immediately after each exercise’s
title. While you shouldn’t expect the length of your solution to match mine exactly,

vii

viii Preface

I hope that providing the length of my solution will prevent you from going too far
astray before reconsidering your approach or seeking assistance. “Solved” appears
immediately ahead of the solution’s length when my solution can be found in the
second half of the book.

This book can be used in a variety of ways. Its concise introductions to Python
programming concepts, and extensive collection of exercises, allow it to be used
as the lone textbook in an introductory programming course. It can also be used
to supplement another textbook that includes only a limited selection of exer-
cises. A motivated individual could teach themselves to program in Python using
only this book. However, there are, perhaps, easier ways to learn the language
because the concise introductions only cover each topic’s most important aspects,
without examining every special case or unusual circumstance. No matter what
other resources you use with this book, if any, reading its chapters, completing
its exercises, and studying the provided solutions will enhance your programming
ability.

Calgary, Canada
December 2024

Ben Stephenson

Acknowledgements I would like to thank Dr. Tom Jenkyns for reviewing the
first edition of this book. His helpful comments and suggestions, which resulted
in numerous refinements and improvements, were greatly appreciated.

Competing Interests The author has no competing interests to declare that are
relevant to the content of this manuscript.

Contents

Part I Exercises

1 Introduction to Programming . 3
1.1 Storing and Manipulating Values . 4
1.2 Calling Functions . 5

1.2.1 Reading Input . 6
1.2.2 Displaying Output . 7
1.2.3 Importing Additional Functions . 8

1.3 Comments . 8
1.4 Formatting Values . 9
1.5 Working with Strings . 12
1.6 Debugging . 13

1.6.1 Syntax Errors . 13
1.6.2 Runtime Errors . 14
1.6.3 Logic Errors . 14

1.7 Exercises . 16

2 Decision-Making . 29
2.1 If Statements . 29
2.2 If-Else Statements . 30
2.3 If-Elif-Else Statements . 31
2.4 If-Elif Statements . 33
2.5 Nested If Statements . 33
2.6 Boolean Logic . 34
2.7 Debugging . 35

2.7.1 Syntax Errors . 36
2.7.2 Runtime Errors . 36
2.7.3 Logic Errors . 37

2.8 Exercises . 38

3 Repetition . 55
3.1 While Loops . 55
3.2 For Loops . 56
3.3 Nested Loops . 58

ix

x Contents

3.4 Debugging . 59
3.4.1 Syntax Errors . 59
3.4.2 Runtime Errors . 59
3.4.3 Logic Errors . 60

3.5 Exercises . 61

4 Functions . 75
4.1 Functions with Parameters . 76
4.2 Variables in Functions . 79
4.3 Return Values . 79
4.4 Importing Functions into Other Programs . 81
4.5 Debugging . 82

4.5.1 Syntax Errors . 82
4.5.2 Runtime Errors . 83
4.5.3 Logic Errors . 84

4.6 Exercises . 85

5 Lists . 97
5.1 Accessing Individual Elements . 98
5.2 Loops and Lists . 98
5.3 Additional List Operations . 101

5.3.1 Adding Elements to a List . 101
5.3.2 Removing Elements from a List . 102
5.3.3 Rearranging the Elements in a List . 102
5.3.4 Searching a List . 103

5.4 Lists as Return Values and Arguments . 104
5.5 Debugging . 105

5.5.1 Syntax Errors . 105
5.5.2 Runtime Errors . 106
5.5.3 Logic Errors . 106

5.6 Exercises . 107

6 Dictionaries . 125
6.1 Accessing, Modifying and Adding Values . 126
6.2 Removing a Key-Value Pair . 127
6.3 Additional Dictionary Operations . 127
6.4 Loops and Dictionaries . 128
6.5 Dictionaries as Arguments and Return Values 129
6.6 Debugging . 130

6.6.1 Syntax Errors . 130
6.6.2 Runtime Errors . 130
6.6.3 Logic Errors . 131

6.7 Exercises . 131

Contents xi

7 Files and Exceptions . 141
7.1 Opening a File . 142
7.2 Reading Input from a File . 142
7.3 End of Line Characters . 144
7.4 Writing Output to a File . 145
7.5 Command Line Arguments . 146
7.6 Exceptions . 148
7.7 Debugging . 150

7.7.1 Syntax Errors . 150
7.7.2 Runtime Errors . 151
7.7.3 Logic Errors . 151

7.8 Exercises . 152

8 Recursion . 165
8.1 Summing Integers . 165
8.2 Fibonacci Numbers . 167
8.3 Counting Characters . 168
8.4 Debugging . 170

8.4.1 Syntax Errors . 170
8.4.2 Runtime Errors . 171
8.4.3 Logic Errors . 171

8.5 Exercises . 172

Part II Solutions

9 Solutions to Selected Introductory Exercises . 185

10 Solutions to Selected Decision-Making Exercises 195

11 Solutions to Selected Repetition Exercises . 209

12 Solutions to Selected Function Exercises . 219

13 Solutions to Selected List Exercises . 235

14 Solutions to Selected Dictionary Exercises . 249

15 Solutions to Selected File and Exception Exercises 257

16 Solutions to Selected Recursion Exercises . 271

Index . 279

Part I

Exercises

1Introduction toProgramming

Computers help us perform many different tasks. They allow us to read the news,
watch videos, play games, write books, purchase goods and services, perform com-
plex mathematical analyses, communicate with friends and family, and so much
more. All of these tasks require the user to provide input, such as clicking on a video
to watch or typing the sentences that will be included in a book. In response, the
computer generates output, such as printing a book, playing sounds, or displaying
text and images on the screen.

Consider the examples in the previous paragraph. How did the computer know
what input to request? How did it know what actions to take in response to the input?
How did it know what output to generate, and in what form it should be presented?
The answer to all of these questions is “a person gave the computer instructions, and
the computer carried them out.”

An algorithm is a finite sequence of effective steps that solve a problem. A step is
effective if it is unambiguous and possible to perform. The number of steps must be
finite (rather than infinite) so that all of the steps can be completed. Recipes, assembly
instructions for furniture or toys, and the steps needed to open a combination lock
are examples of algorithms that people encounter in everyday life.

The form in which an algorithm is presented is flexible and can be tailored to
the problem that the algorithm solves. Words, numbers, lines, arrows, pictures, and
other symbols can all be used to convey the steps that must be performed. While the
forms that algorithms take vary, all algorithms describe steps that can be followed to
complete a task successfully.

A computer program is a sequence of instructions that control the behavior of
a computer. The instructions tell the computer when to perform tasks like reading
input and displaying results, and how to transform and manipulate values to achieve
a desired outcome. An algorithm must be translated into a computer program before
a computer can perform its steps. The translation process is called programming and
the person who performs the translation is referred to as a programmer.

© Springer Nature Switzerland AG 2025
B. Stephenson, The Python Workbook, Texts in Computer Science,
https://doi.org/10.1007/978-3-031-84560-4_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_1&domain=pdf
https://doi.org/10.1007/978-3-031-84560-4_1
https://doi.org/10.1007/978-3-031-84560-4_1
https://doi.org/10.1007/978-3-031-84560-4_1
https://doi.org/10.1007/978-3-031-84560-4_1
https://doi.org/10.1007/978-3-031-84560-4_1
https://doi.org/10.1007/978-3-031-84560-4_1
https://doi.org/10.1007/978-3-031-84560-4_1
https://doi.org/10.1007/978-3-031-84560-4_1
https://doi.org/10.1007/978-3-031-84560-4_1
https://doi.org/10.1007/978-3-031-84560-4_1
https://doi.org/10.1007/978-3-031-84560-4_1

4 1 Introduction to Programming

Computer programs are written in computer programming languages. Program-
ming languages have precise syntax rules that must be followed carefully. Failing to
do so will cause the computer to report an error instead of executing the program-
mer’s instructions. Many programming languages have been created, each of which
has its own strengths and weaknesses. Popular programming languages currently
include Java, C++, JavaScript, PHP, C# and Python, among others. While there are
significant differences between these languages, all of them allow a programmer to
control the computer’s behavior.

Reading this book, and completing the exercises in it, will help you learn to
program in Python. Python was selected because it is relatively easy for new pro-
grammers to learn, it can be used to solve a wide variety of problems, and it is used
extensively in both academia and industry. Python statements that read keyboard
input from the user, perform calculations, and generate text output are described in
the sections that follow. Later chapters describe additional concepts that can be used
to solve larger and more complex problems.

1.1 Storing andManipulatingValues

A variable is a named location in a computer’s memory that holds a value. In Python,
variable names must begin with a letter or an underscore, followed by any combina-
tion of letters, underscores, and numbers.1 Variables are created using assignment
statements. The name of the variable that you want to create appears to the left of the
assignment operator, which is denoted by =, and the value that will be stored in the
variable appears to the right of the assignment operator. For example, the following
statement creates a variable named x and stores 5 in it:

The right side of an assignment statement can be an arbitrarily complex cal-
culation that includes parentheses, mathematical operators, numbers, and variables
that were created by earlier assignment statements (among other things). Familiar
mathematical operators that Python provides include addition (+), subtraction (–),
multiplication (*), division (/), and exponentiation (**). Operators are also provided
for floor division (//) and modulo (%). The floor division operator computes the floor
of the quotient that results when one number is divided by another, while the modulo
operator computes the remainder when one number is divided by another.

The following assignment statement computes the value of one plus x squared,
and stores it in a new variable named y.

1 Variable names are case sensitive. As a result, count, Count and COUNT are distinct variable
names, despite their similarity.

1.2 Calling Functions 5

Python respects the usual order of operations rules for mathematical operators. Since
x is 5 (from the previous assignment statement), and exponentiation has higher
precedence than addition, the expression to the right of the assignment operator
evaluates to 26. Then this value is stored in y.

The same variable can appear on both sides of an assignment operator. For
example:

While your initial reaction might be that such a statement is unreasonable, it is, in
fact, a valid Python statement that is evaluated just like the assignment statements that
were examined previously. Specifically, the expression to the right of the assignment
operator is evaluated, and then the result is stored into the variable to the left of
the assignment operator. In this particular case, y is 26 when the statement starts
executing, so 6 is subtracted fromy resulting in 20. Then 20 is stored intoy, replacing
the 26 that was stored there previously. Subsequent uses of y will evaluate to the
newly stored value of 20 (until it is changed with another assignment statement).

1.2 Calling Functions

There are some tasks that many programs have to perform, such as reading input
values from the keyboard, sorting a list, and computing the square root of a number.
Python provides functions that perform these common tasks, as well as many others.
The programs that you create will call these functions so that you don’t have to solve
these problems yourself.

A function is called by using its name, followed by parentheses. Many functions
require values when they are called, such as a list of names to sort or the number for
which the square root will be computed. These values, called arguments, are placed
inside the parentheses when the function is called. When a function call has multiple
arguments, they are separated by commas.

Many functions compute a result. This result can be stored in a variable using an
assignment statement. The name of the variable appears to the left of the assignment
operator, and the function call appears to the right of the assignment operator. For
example, the following assignment statement calls theround function,which rounds
a number to the closest integer.

The variable q (which must have been assigned a value previously) is passed as the
argument to the round function. When the round function executes, it identifies
the integer that is closest to q and returns it. Then the returned integer is stored in r.

6 1 Introduction to Programming

Rounding a number reduces or increases its value to the closest integer. But
this raises a question: Should the value be reduced or increased if it is exactly
halfway between two integers? Many people have been taught that the num-
ber should be rounded up in this case. But that is not what Python’s round
function does. Instead, it rounds such a value to the closest even number. For
example, 1.5 is rounded up to 2, but 4.5 is rounded down to 4. This is referred
to as “rounding half to even” or “bankers’ rounding”. Python uses this type of
rounding because it eliminates the bias that is introduced when half values are
always rounded up.

1.2.1 Reading Input

Python programs can read input from the keyboard by calling the input function.
This function causes the program to stop and wait for the user to type something.
When the user presses the enter key, the characters typed by the user are returned
by the input function. Then the program continues executing. Input values are
normally stored in a variable using an assignment statement, so that they can be used
later in the program. For example, the following statement reads a value typed by
the user and stores it in a variable named a.

The input function always returns a string, which is computer science terminol-
ogy for a sequence of characters. If the value being read is a person’s name, the title
of a book, or the name of a street, then storing the value as a string is appropriate.
But if the value is numeric, such as an age, a temperature, or the cost of a meal at a
restaurant, then the string entered by the user is normally converted to a number. The
programmer must decide whether the result of the conversion should be an integer or
a floating-point number (a number that can include digits to the right of the decimal
point). Conversion to an integer is performed by calling the int function, while
conversion to a floating-point number is performed by calling the float function.

It is common to call the int or float function in the same assignment statement
that reads an input value from the user. For example, the following statements read
a customer’s name, the quantity of an item that they would like to purchase, and the
item’s price. Each of these values is stored in its own variable with an assignment
statement. The name is stored as a string, the quantity is stored as an integer, and the
price is stored as a floating-point number.

Notice that an argument was passed to theinput function each time it was called.
This argument, which is optional, is a prompt that tells the user what to enter. The

1.2 Calling Functions 7

prompt is enclosed in double quotes so that Python knows to treat the characters as
a string, instead of interpreting them as the names of functions or variables.

Mathematical calculations can be performed on both integers and floating-point
numbers. For example, another variable can be created that holds the total cost of
the items, with the following assignment statement:

This statement will only execute successfully if quantity and price have been
converted to numbers, using the int and float functions described previously.
Attempting to multiply these values without converting them to numbers will cause
your program to terminate immediately and display an error message.

1.2.2 Displaying Output

Text output is generated using the print function. It can be called with one argu-
ment, which is the value that will be displayed. For example, the following statements
print the number 1, the string Hello!, and whatever is currently stored in the vari-
able x. The value in x could be an integer, a floating-point number, a string, or a
value of some other type that has not yet been discussed. Each item is displayed on
its own line.

Multiple values can be printedwith one function call by passing several arguments
to the print function. The additional arguments are separated by commas. For
example:

All of these values are printed on the same line. The arguments that are enclosed in
double quotes are strings that are displayed exactly as typed. The other arguments
are variables. When a variable is printed, Python displays the value that is currently
stored in it. Spaces are automatically displayed between the items when print is
called with two or more arguments.

The arguments to a function call can be values and variables, as shown previously.
They can also be arbitrarily complex expressions involving parentheses, mathemat-
ical operators and other function calls. Consider the following statement:

When it executes, the product, x * y, is computed and displayed, along with all of
the other arguments passed to the print function.

8 1 Introduction to Programming

1.2.3 Importing Additional Functions

Some functions, likeinput andprint, are used inmanyprograms,while others are
not used as broadly. Themost commonly used functions are available in all programs,
while other less commonly used functions are stored inmodules that the programmer
can importwhen they are needed. For example, additionalmathematical functions are
located in the mathmodule. It can be imported by including the following statement
at the beginning of your program:

Functions in the math module include sqrt, ceil, and sin, among many
others. A function imported from a module is called by using the module’s name,
followed by a period, followed by the name of the function and its arguments. For
example, the following statement computes the square root of y (which must have
been initialized previously) by calling the mathmodule’s sqrt function, and stores
the result in z.

Some other commonly used Python modules include random, time, and sys.
More information about these modules, and many others, can be found online.

1.3 Comments

Comments give programmers the opportunity to explain what, how or why they
are doing something in their program. This information can be very helpful when
returning to a project after being away from it for a period of time, or when working
on a program that was initially created by someone else. The computer ignores all
of the comments in the program. They are only included to benefit people.

In Python, the beginning of a comment is denoted by the# character. The comment
continues from the# character to the end of the line. A comment can occupy an entire
line, or just part of it, with the comment appearing to the right of a Python statement.

Python files commonly begin with a comment that briefly describes the program’s
purpose. This allows anyone looking at the file to quickly determinewhat the program
does, without carefully examining its code. Commenting your code also makes it
much easier to identify which lines perform each of the tasks needed to compute the
program’s results. You are strongly encouraged to write thorough comments when
completing all of the exercises in this book.

1.4 Formatting Values 9

1.4 FormattingValues

Sometimes the result of a calculation is a floating-point number that has many digits
to the right of the decimal point. While one might want to display all of the digits
in some programs, there are other circumstances where the value must be rounded
to a particular number of decimal places when it is displayed. Another unrelated
programmight output a large number of integers that need to be lined up in columns,
and also need to center headings over those columns. Python has several formatting
constructs that allow these, and many other, formatting tasks to be performed. The
use of formatted string literals, commonly referred to as f-strings, will be examined in
this section, and used throughout the remainder of this book, but you may encounter
other formatting mechanisms when examining code from other sources.2

An f-string consists of the letter f, followed by a sequence of characters enclosed
in double quotes. The value that will be formatted is enclosed in braces within the
f-string. This value is frequently a variable, but it can be any Python expression. It is,
optionally, followed by additional characters that control how it will be formatted.
Such characters are referred to as a format specifier.

The format specifier begins with a colon, and is followed by additional characters
that control the formatting. The :f format specifier indicates that a value should be
formatted as a floating-point number, while :d formats a value as a decimal (base
10) integer, and :s formats a value as a string. For example, f"{num:d}" is a
formatted string literal that formats whatever value is currently stored in the num
variable as an integer.

Characters can precede the f, d, or s to control additional formatting details.
Only a limited number of formatting operations will be considered in this section.
Many additional formatting tasks can be performed using f-strings and the format
specifiers within them, but these additional tasks are outside the scope of this book.

A floating-point number can be formatted to include a specific number of decimal
places by including a decimal point and the desired number of digits immediately
ahead of the f in the format specifier. For example, :.2f is used to format a value
as a floating-point number with two digits to the right of the decimal point, while
:.7f indicates that 7 digits will appear to the right of the decimal point. Rounding
is performed when the number of digits to the right of the decimal point is reduced.
Zeros are added if the number of digits is increased. If the number of digits to the
right of the decimal point is omitted, then Python uses 6 digits when formatting the
value.

The number of digits to the right of the decimal point cannot be specified when
formatting integers and strings, but integers, floating-point numbers, and strings can
all be formatted so that they occupy at least some minimum width. This is useful
when generating output that includes columns of values. The minimum number of

2 Python has several mechanisms for formatting values. These include the formatting operator
denoted by %, the format function and format method, template strings, and most recently,
f-strings.

10 1 Introduction to Programming

characters to use is placed before the d, f, or s, and before the decimal point (if
present). For example, :8d formats a value as an integer occupying a minimum
of 8 characters, while :6.2f formats a value as a floating-point number using a
minimum of 6 characters, including the decimal point, and the two digits to its right.

When a minimumwidth is specified, the default behavior is to insert spaces ahead
of the value if it is an integer or floating-point number, causing the digits to be right
aligned within the indicated width. The value can be centered within the indicated
width by including a ^ character immediately after the colon in the format specifier.
Left alignment is achieved using the < character. The default behavior for strings is to
achieve the minimum width by adding spaces after the characters in the string. This
causes them to be left aligned. Right alignment for strings is achieved by including
a > character immediately after the colon. Like integers and floating-point numbers,
strings can be centered by using the ^ character.

When large numbers are written by hand, it’s common to use commas to separate
the digits into groups of three, so that the number is easier to read and understand.
These separators can be included in a formatted value by including a comma in the
format specifier. The comma is placed immediately after the minimum width (if
specified), and before the decimal point in a format specifier that includes one. For
example, :,d formats the number as an integer using commas as separators, without
specifying a minimum number of characters that will be used, while :10,.2f will
format a number as a floating-point value, with two digits to the right of the decimal
point, occupying at least 10 characters, including the commas used to separate groups
of three digits.

Finally, it is worth noting that an f-string can include multiple values that need to
be formatted (and their format specifiers), and it can contain text that will be included
in the formatted string without modification. This allows complex output messages
to be created using only one f-string. Each value being formatted is enclosed in
braces together with its format specifier. Any characters that are not within braces in
the f-string will be retained without modification. It is also worth emphasizing that
format specifiers are optional within an f-string. If one only includes the name of a
variable (or some other valid Python expression) within braces in the f-string, then
the value of that variable or expression will be included in the string using the default
formatting for that type of value.

Formatting is often performed as output is being displayed by passing an f-string
to print. Two examples of this are shown below. The first displays the value
of the variable x, with exactly two digits to the right of the decimal point. The
second statement formats two values before displaying them as part of a larger
output message. The first value that is formatted is a string, while the second is an
integer. Both of the format specifiers in the second statement could have been omitted
because nothing in those format specifiers has overridden Python’s default behavior.

Several additional formatting examples are shown in the following table. The
variables count, x, and name have previously been assigned 12, -2.75, and
"Andrew", respectively.

1.4 Formatting Values 11

Code Segment: f"{count:d}"
Result: "12"
Explanation: The value stored in count is formatted as a decimal (base 10) integer.
Code Segment: f"{x:f}"
Result: "-2.750000"
Explanation: The value stored in x is formatted as a floating-point number.
Code Segment: f"{count:d} and {x:f}"
Result: "12 and -2.750000"
Explanation: The value stored in count is formatted as a decimal (base 10) integer,

and the value stored in x is formatted as a floating-point number. The
other characters in the string are retained without modification.

Code Segment: f"{count:.4f}"
Result: "12.0000"
Explanation: The value stored in count is formatted as a floating-point number,

with 4 digits to the right of the decimal point.
Code Segment: f"{x:.1f}"
Result: "-2.8"
Explanation: The value stored in x is formatted as a floating-point number, with 1

digit to the right of the decimal point. The value was rounded when it
was formatted because the number of digits to the right of the decimal
point was reduced.

Code Segment: f"{name:10s}"
Result: "Andrew "
Explanation: The value stored in name is formatted as a string so that it occupies

at least 10 characters. Because name is only six characters long, four
trailing spaces are included in the result.

Code Segment: f"{name:>10s}"
Result: " Andrew"
Explanation: The value stored in name is formatted as a string so that it occupies

at least 10 characters. Because name is only six characters long, four
spaces are included in the result. These spaces are included ahead of
the name because a > character was included between the colon and
the minimum width.

Code Segment: f"{name:4s}"
Result: "Andrew"
Explanation: The value stored in name is formatted as a string so that it occupies at

least four spaces. Because name is longer than the indicatedminimum
length, the resulting string is equal to name.

Code Segment: f"{count:8d}{x:8.0f}"
Result: " 12 -3"
Explanation: Both count and x are formatted so that each occupies a minimum of

eight characters. Spaces are included ahead of the values. Rounding
was performed on x because the formatted value has fewer decimal
places than the stored value.

Code Segment: f"Items: {count}, {x}, and {name}."
Result: "Items: 12, -2.75 and Andrew."
Explanation: Eachof the values is formattedusingPython’s default behavior because

no format specifiers were included in the braces.

12 1 Introduction to Programming

1.5 Working with Strings

Like numbers, strings can be manipulated with operators and passed to functions.
Operations that are commonly performed on strings include concatenating two
strings, computing the length of a string, and extracting individual characters from
a string. These common operations are described in the remainder of this section.
Information about other string operations can be found online.

Strings can be concatenated using the + operator. The string to the right of the
operator is appended to the string to the left of the operator to form a new string.
For example, the following program reads two strings from the user, which are a
person’s first and last names. It then uses string concatenation to construct a new
string, which is the person’s last name, followed by a comma and a space, followed
by the person’s first name. Then the result of the concatenation is displayed.

A string’s length is the number of characters it contains. This value, which is
always a non-negative integer, is computed by calling the len function. The len
function’s only argument is a string, and the length of that string is returned as the
function’s only result. The following example demonstrates the len function by
computing the length of a person’s name.

Sometimes, it is necessary to access individual characters within a string. For
example, one might want to extract the first character from three strings that contain
a first name, middle name, and last name, so that a person’s initials can be displayed.

Each character in a string has a unique integer index. The first character in the
string has index 0, while the last character in the string has an index which is equal to
the length of the string, minus 1. A single character in a string is accessed by placing
its index inside square brackets after the name of the variable containing the string.
The following program demonstrates this by displaying a person’s initials.

1.6 Debugging 13

Several consecutive characters in a string can be accessed by including two indices,
separated by a colon, inside the square brackets. This is referred to as slicing a string.
String slicing can be used to efficiently access multiple characters within a string.

1.6 Debugging

Programming is an error prone process, and even experienced programmers make
mistakes. Sometimes, these mistakes, which are often referred to as bugs, are typos
where a character was missed, or the wrong character was used. In other cases, the
mistake results from a misunderstanding of what the program needs to do, or of
how a particular Python statement works. You will make these mistakes too. It’s
expected. It’s normal. It’s unavoidable. Debugging is the process of correcting errors
in a program. Learning how to identify and correct errors in your programs is a
critical part of being an effective programmer.

1.6.1 Syntax Errors

There are rules that describe the structure of a valid Python statement. A statement
that does not follow these rules contains a syntax error. For example, when calling
a function like print or input, the name of the function must be followed by
an open parenthesis, and there must be a subsequent close parenthesis that matches
it. Python will not be able to execute your program if one of these parentheses is
missing. Other examples of syntax errors include placing a literal value or function
call to the left of an assignment operator, and attempting to include a dollar sign in
a floating-point value.

Syntax errors are detected and reported by Python as it loads your program. A
message is displayed that describes both the nature of the error and the locationwhere
the error was detected. The location is indicated by both the line number in the error
message and the ^ that marks the location of the error within the line. The error is
removed bymoving to the indicated line in your editor andmodifying it to correct the
problem. Syntax errors are normally quite easy to correct because the error message
provided by Python includes both the nature of the error and its location.

14 1 Introduction to Programming

An error message is shown below. It was displayed when Python attempted to run
a program that was missing the open parenthesis between print and its argument.
Notice that the error message indicates that the error occurred on line 1 in the file,
and the ^ identifies the location of the missing open parenthesis within the line.

1.6.2 Runtime Errors

Some errors cannot be detected by Python until the program begins to run. These
errors are referred to as runtime errors. They are characterized by a program that
begins to run, but ends with an error message instead of the program’s expected
output. Whether or not the error occurs may depend on what input is provided by the
user. For example, a program that divides by a value entered by the user will perform
the division successfully in most cases, but a runtime error will occur when the user
enters zero.

When a program terminates unexpectedly (sometimes referred to as a crash) due to
a runtime error, the error message includes both the line on which the error occurred
and a brief description of the error. This information can be helpful for locating
the error. However, the correction may not be confined to that line. For example,
correcting the division by zero error described previously might require several lines
of new code to be written, so that the program performs a different calculation when
the user enters zero than when a non-zero value is entered. Runtime errors can be
more difficult to locate and correct than syntax errors because the error may only
occur for some input values, and the change needed to correct the error is often larger.
The runtime error reported by Python when attempting to divide by zero is shown
below. It shows that the error occurred on line 10, and that the error is the result
of dividing by zero, but it does not identify where or how the program needs to be
changed to correct the error.

1.6.3 Logic Errors

Syntax errors and runtime errors both cause an error message to be displayed when
the program is run, but there are other errors that can be present in a program that
do not result in an error message. These mistakes, which are commonly referred

1.6 Debugging 15

to as logic errors, allow the program to run to completion but cause the program
to compute and display an incorrect value, because the statements in the program
perform a task that is different from what the programmer intended. Python has no
way of knowing that the statements differ from what was intended, so it is unable to
report that this type of error has occurred. Instead, the programmer must detect that
the error is present by examining the results provided by the program and realizing
that they are incorrect. One way that this can be accomplished is by calculating
the expected output for the program for a particular input by hand. Then the value
calculated by hand can be compared to the result produced by the program.

Logic errors aremore difficult to detect and correct than syntax and runtime errors,
because Python is unable to provide any information to guide the programmer in
their search. While one might be able to detect the error by carefully reading their
code, this is often ineffective because the programmer is unable to detect the subtle
difference between what they intended and what they actually wrote. Instead, one
must approach these problems in a more active manner.

One strategy that can be taken is to carefully trace the code by hand. The program-
mer considers each statement in the program in sequence and, using a pencil and
paper, writes down the value of each variable. When a statement changes the value
stored in a variable, the old value is crossed out or erased, and the new value is written
down. Writing the values down is an essential part of tracing because few people are
capable of accurately tracking the values of several variables in their head. Tracing
the code helps reveal errors because the programmer performs each step needed to
compute the result by hand, and this allows the programmer to identify the point
where an incorrect calculation was performed.

A second approach that can be used to debug logic errors is adding extra calls to the
print function that display the values of variables used to calculate the program’s
output. Like tracing, the goal is to examine the values of intermediate steps in the
calculation and reveal the point where an incorrect calculation was performed. Once
the values have been displayed, the programmer identifies the incorrect value and
updates the manner in which it is calculated to remove the error.

Printing values to help debugprograms is done so frequently that Python’s f-strings
have a shorthand that can be used to easily display the current value of a variable in
a readable manner. Within an f-string, one can enclose the name of the variable of
interest, and an equal sign, in braces. The resulting string will consist of the name of
the variable, followed by an equal sign and its current value. For example, the name
and current value of the count variable are display by the following statement:

Debugging is an interesting, rewarding, and essential part of programming. While
it can be challenging and frustrating, a significant sense of accomplishment can be
achieved when the last bug is resolved, and the program produces its intended output.

16 1 Introduction to Programming

1.7 Exercises

Completing the exercises in this chapter will allow you to put the concepts discussed
previously into practice. While the tasks that they ask you to carry out are generally
small, tackling these exercises is an important step toward being able to create larger
programs that solve more interesting problems.

Exercise 1: Mailing Address
(Solved, 9 Lines)

Create a program that displays your name and completemailing address. The address
should be printed in the format that is normally used in the area where you live. Your
program does not need to read any input from the user.

Exercise 2: Hello
(9 Lines)

Write a program that asks the user to enter their name. The program should greet the
user with a message that includes their name.

Exercise 3: Area of a Room
(Solved, 13 Lines)

Write a program that asks the user to enter the width and length of a room. Once
these values have been read, your program should compute and display the area of
the room. The length and the width will be entered as floating-point numbers. Include
units in your prompt and output message; either feet or meters, depending on which
unit you are more comfortable working with.

Exercise 4: Area of a Field
(Solved, 15 Lines)

Create a program that reads the length and width of a farmer’s field from the user in
feet. Display the area of the field in acres.

Hint: There are 43,560 square feet in an acre.

1.7 Exercises 17

Exercise 5: Bottle Deposits
(Solved, 15 Lines)

In many jurisdictions, a small deposit is added to drink containers to encourage
people to recycle them. In one particular jurisdiction, drink containers holding one
liter or less have a $0.10 deposit, and drink containers holding more than one liter
have a $0.25 deposit.

Write a program that reads the number of containers of each size from the user.
Your program should continue by computing and displaying the refund that will be
received for returning those containers. Format the output so that it includes a dollar
sign and two digits to the right of the decimal point. The output should also include
commas that separate groups of three digits when the refund amount is $1,000.00 or
more.

Exercise 6: Tax and Tip
(Solved, 17 Lines)

The program that you create for this exercise will begin by reading the cost of a meal
ordered at a restaurant from the user. Then your program will compute the tax and
tip for the meal. Use your local tax rate when computing the amount of tax owing.
Compute the tip as 18% of the meal amount (without the tax). The output from your
program should include the tax amount, the tip amount, and the grand total for the
meal, including both the tax and the tip. All of the output values should include a
dollar sign, two digits to the right of the decimal point, and appropriate digit grouping
in large values.

Exercise 7: Sum of the First .n Positive Integers
(Solved, 11 Lines)

Write a program that reads a positive integer, .n, from the user and then displays the
sum of all of the integers from 1 to.n. The sum of the first .n positive integers can be
computed using the formula:

.sum = (n)(n + 1)

2

Exercise 8: Widgets and Gizmos
(15 Lines)

An online retailer sells two products: widgets and gizmos. Each widget weighs 75
grams. Each gizmo weighs 112 grams. Write a program that reads the number of

18 1 Introduction to Programming

widgets and the number of gizmos from the user. Then your program should compute
and display the total weight of the parts.

Exercise 9: Compound Interest
(19 Lines)

Pretend that you have just opened a new savings account that earns 4% interest per
year. The interest that it earns is paid at the end of the year and is added to the
account’s balance. Write a program that begins by reading the amount of money
deposited into the account from the user. Then your program should compute and
display the amount in the savings account after 1, 2, and 3 years. Display each amount
with appropriate formatting for a monetary value.

Exercise 10: Pythagorean Theorem
(Solved, 14 Lines)

ThePythagoreanTheoremstates that, for right triangles,3 the lengthof thehypotenuse
(the longest side) is equal to the square root of the sum of the squares of the lengths of
the other sides. This is commonly recited as .a2 + b2 = c2, which can be rearranged
to.c = √

a2 + b2, where.c is the length of the hypotenuse, and.a and.b are the lengths
of the shorter sides. Use this information to write a program that reads the lengths of
the two shorter sides of a right triangle from the user, and displays the length of the
triangle’s hypotenuse.

There are right triangles where the lengths of all three sides are integers. Some
examples of such include triangles with side lengths 3, 4, and 5, side lengths
5, 12, and 13, and side lengths 8, 15, and 17. Knowledge of these triangles can
be helpful when performing construction, because one can mark the building
materials at the appropriate lengths on the two shorter sides, and then adjust
the angle between thematerials until the distance between themarks is equal to
the expected hypotenuse. Doing this ensures that there is a right angle between
the materials.

3 A right triangle is a triangle where one of the interior angles is exactly 90 degrees.

1.7 Exercises 19

Exercise 11: Arithmetic
(Solved, 22 Lines)

Create a program that reads two integers,.a and.b, from the user. Your program should
compute and display:

• The sum of .a and .b
• The difference when .b is subtracted from.a
• The product of .a and .b
• The quotient when .a is divided by .b
• The remainder when .a is divided by .b
• The result of .log10 a
• The result of .ab.

Hint: You will probably find the log10 function in the mathmodule helpful
for computing the second last item in the list.

Exercise 12: Pizza Planning
(Solved, 19 Lines)

Imagine that you are ordering pizzas for a group of friends. Each pizza has eight
slices, and everyone in the group will eat the same number of slices. Write a program
that begins by reading the number of people in the group and the number of slices
of pizza that each person will eat from the user. Use these pieces of information to
compute and display the number of pizzas that need to be ordered, noting that it is
impossible to order part of a pizza. Your program should also display the number of
slices that will be left over.

Hint: The ceil function, which is located in the math module, can be used
to identify the next integer greater than or equal to a particular value.

Exercise 13: Fuel Efficiency
(13 Lines)

In the United States, fuel efficiency for vehicles is normally expressed in miles-per-
gallon (MPG). In Canada, fuel efficiency is normally expressed in liters-per-hundred
kilometers (L/100km). Use your research skills to determine how to convert from

20 1 Introduction to Programming

MPG toL/100km.Then create a program that reads a value from the user inAmerican
units and displays the equivalent fuel efficiency in Canadian units.

Exercise 14: Distance Between Two Points on Earth
(27 Lines)

The surface of the Earth is curved, and the distance between degrees of longitude
varieswith latitude.As a result, finding the distance between two points on the surface
of the Earth is more complicated than simply using the Pythagorean theorem.

Let .(t1, g1) and.(t2, g2) be the latitude and longitude of two points on the Earth’s
surface. The distance between these points, following the surface of the Earth, in
kilometers is:

.distance = 6371.01 × arccos(sin(t1) × sin(t2) + cos(t1) × cos(t2) × cos(g1 − g2))

The value 6371.01 in the previous equation wasn’t selected at random. It is the
average radius of the Earth in kilometers.

Create a program that allows the user to enter the latitude and longitude of two
points on the Earth in degrees. Your program should display the distance between
the points, following the surface of the earth, in kilometers.

Hint: Python’s trigonometric functions operate in radians. As a result, you will
need to convert the user’s input from degrees to radians before computing the
distance with the formula discussed previously. The math module contains a
function named radians which converts from degrees to radians.

Exercise 15: Making Change
(Solved, 37 Lines)

Consider the software that runs on a self-checkout machine. One task that it must be
able to perform is to compute the amount of change to provide when a shopper pays
for a purchase with cash.

Write a program that begins by reading a number of cents from the user as an
integer. Then your program should compute and display the denominations of the
coins that will be used to provide that amount of change. The change should be
provided using as few coins as possible. Assume that the machine is loaded with
pennies, nickels, dimes, quarters, loonies and toonies.

1.7 Exercises 21

Aone-dollar coin was introduced in Canada in 1987. It is referred to as a loonie
because one side of the coin has a loon (a type of bird) on it. The two-dollar
coin, referred to as a toonie, was introduced 9 years later. It was named by
combining the number two and the name of the loonie.

Exercise 16: Height Units
(Solved, 16 Lines)

Many people think about their height in feet and inches, even in some countries that
primarily use the metric system. Write a program that reads a number of feet from
the user, followed by a number of inches. Once these values have been read, your
program should compute and display the equivalent number of centimeters.

Hint: One foot is 12 inches. One inch is 2.54 centimeters.

Exercise 17: Distance Units
(20 Lines)

In this exercise, you will create a program that begins by reading a measurement
in feet from the user. Then your program should display the equivalent distance in
inches, yards and miles. Use the Internet to look up the necessary conversion factors
if you don’t have them memorized.

Exercise 18: Area and Volume
(15 Lines)

Write a program that begins by reading a radius, .r , from the user. The program will
continue by computing and displaying the area of a circle and the volume of a sphere,
both with radius .r . Use the pi constant in the math module in your calculations.

Hint: The area of a circle is computed using the formula area .= πr2. The
volume of a sphere is computed using the formula .volume = 4

3πr
3.

22 1 Introduction to Programming

Exercise 19: Heat Capacity
(Solved, 23 Lines)

The amount of energy required to increase the temperature of one gram of a material
by one degree Celsius is the material’s specific heat capacity, .C . The total amount
of energy, .q, required to raise .m grams of a material by .�T degrees Celsius can be
computed using the formula:

.q = mC�T

Write a program that reads the mass of some water and the temperature change
from the user. Your program should display the total amount of energy that must be
added or removed to achieve the desired temperature change.

Hint: The specific heat capacity of water is .4.186 J
g◦C . Because water has a

density of 1.0 grams per milliliter, you can use grams and milliliters inter-
changeably in this exercise.

Extend your program so that it also computes the cost of heating the water. Elec-
tricity is normally billed in kilowatt hours rather than Joules. In this exercise, you
should assume that electricity costs 8.9 cents per kilowatt hour. Use your program
to compute the cost of boiling the water needed for a cup of tea.

Hint: You will need to look up the factor for converting between Joules and
kilowatt hours to complete the last part of this exercise.

Exercise 20: Volume of a Cylinder
(15 Lines)

The volume of a cylinder can be computed by multiplying the area of its circular
base by its height. Write a program that reads the radius of a cylinder, along with its
height, from the user, and computes its volume. Display the result rounded to one
decimal place.

Exercise 21: Free Fall
(Solved, 15 Lines)

Create a program that determines how quickly an object is traveling when it hits the
ground. The user will enter the height from which the object is dropped in meters
(m). Because the object is dropped, its initial speed is 0.0.m/s. Assume that the

1.7 Exercises 23

acceleration due to gravity is 9.8.m/s2. You can use the formula.vf =
√
v2i + 2ad to

compute the final speed, .vf , when the initial speed, .vi , acceleration, .a, and distance,
.d, are known.

Exercise 22: Ideal Gas Law
(19 Lines)

The ideal gas law is a mathematical approximation of the behavior of gasses as
pressure, volume and temperature change. It is usually stated as:

.PV = nRT

where .P is the pressure in kilopascals, .V is the volume in liters, .n is the amount of
substance in moles, .R is the ideal gas constant, equal to 8.314. L kPa

mol K , and .T is the
temperature in Kelvin.

Write a program that computes the amount of gas in moles when the user supplies
the pressure, volume and temperature. Test your program by determining the number
of moles of gas in a SCUBA tank. A typical SCUBA tank holds 12 liters of gas at
a pressure of 20,000 kilopascals (approximately 3,000 PSI). Room temperature is
approximately 20 degrees Celsius or 68 degrees Fahrenheit.

Hint: A temperature is converted from Celsius to Kelvin by adding 273.15
to it. To convert a temperature from Fahrenheit to Kelvin, deduct 32 from it,
multiply it by .

5
9 , and then add 273.15 to it.

Exercise 23: Area of a Triangle
(13 Lines)

The area of a triangle can be computed using the following formula, where .b is the
length of the base of the triangle, and .h is its height:

.area = b × h

2
Write a program that allows the user to enter values for .b and .h. The program

should then compute and display the area of a trianglewith base length.b and height.h.

24 1 Introduction to Programming

Exercise 24: Area of a Triangle (Again)
(16 Lines)

In the previous exercise, you created a program that computed the area of a triangle
when the length of its base and its height were known. It is also possible to compute
the area of a triangle when the lengths of all three of its sides are known. Let .s1, .s2
and .s3 be the lengths of the sides. Let .s = (s1 + s2 + s3)/2. Then the area of the
triangle can be calculated using the following formula:

.area = √
s × (s − s1) × (s − s2) × (s − s3)

Develop a program that reads the lengths of the sides of a triangle from the user and
displays its area.

Exercise 25: Area of a Regular Polygon
(Solved, 14 Lines)

A polygon is regular if its sides are all the same length, and the angles between all
of the adjacent sides are equal. The area of a regular polygon can be computed using
the following formula, where .s is the length of each side, and .n is the number of
sides:

.area = n × s2

4 × tan
(π

n

)

Write a program that reads .s and .n from the user, and then displays the area of the
regular polygon constructed from those values.

Exercise 26: Units of Time
(22 Lines)

Create a program that reads a duration from the user as a number of days, hours,
minutes, and seconds. Compute and display the total number of seconds represented
by that duration.

Exercise 27: Units of Time (Again)
(Solved, 23 Lines)

In this exercise, you will reverse the process described in Exercise 26. Develop
a program that begins by reading a number of seconds from the user. Then your
program should display the equivalent amount of time in the form D:HH:MM:SS,
where D, HH,MM, and SS represent days, hours, minutes and seconds, respectively.
The hours, minutes and seconds should all be formatted so that they occupy exactly

1.7 Exercises 25

two digits. Use your research skills to determine which additional character needs to
be included in the format specifier so that leading zeros are used instead of leading
spaces when a number is formatted to a particular width.

Exercise 28: Current Time
(10 Lines)

Python’s time module includes several time-related functions. One of these is the
asctime function, which reads the current time from the computer’s internal clock
and returns it in a human-readable format. Use this function to write a program that
displays the current time and date. Your program will not require any input from the
user.

Exercise 29: When is Easter?
(33 Lines)

Easter is celebrated on the Sunday immediately after the first full moon following
the spring equinox. Because its date includes a lunar component, Easter does not
have a fixed date in the Gregorian calendar. Instead, it can occur on any date between
March 22 and April 25. The month and day for Easter can be computed for a given
year using the Anonymous Gregorian algorithm, which is shown below.

Set a equal to the remainder when year is divided by 19
Set b equal to the floor of year divided by 100
Set c equal to the remainder when year is divided by 100
Set d equal to the floor of b divided by 4
Set e equal to the remainder when b is divided by 4

Set f equal to the floor of
b + 8

25

Set g equal to the floor of
b − f + 1

3
Set h equal to the remainder when 19a + b − d − g + 15 is divided by 30
Set i equal to the floor of c divided by 4
Set k equal to the remainder when c is divided by 4
Set l equal to the remainder when 32 + 2e + 2i − h − k is divided by 7

Set m equal to the floor of
a + 11h + 22l

451

Set month equal to the floor of
h + l − 7m + 114

31
Set day equal to one plus the remainder when h + l − 7m + 114 is divided by
31

26 1 Introduction to Programming

Write a program that implements theAnonymousGregorian algorithm to compute
the date of Easter. Your program should read the year from the user and then display
an appropriate message that includes the date of Easter in that year.

Exercise 30: Body Mass Index
(14 Lines)

Write a program that computes the body mass index (BMI) of an individual. Your
program should begin by reading a height and weight from the user. Then it should
use one of the following two formulas to compute the BMI before displaying it. If
you read the height in inches and the weight in pounds, then body mass index is
computed using the following formula:

.BMI = weight

height × height
× 703

If you read the height in meters and the weight in kilograms, then body mass index
is computed using this slightly simpler formula:

.BMI = weight

height × height
.

Exercise 31: Wind Chill
(Solved, 22 Lines)

When the wind blows in cold weather, the air feels even colder than it actually is
because the movement of the air increases the rate of cooling for warm objects, such
as people. This effect is known as wind chill.

In 2001, Canada, the United Kingdom and the United States adopted the follow-
ing formula for computing the wind chill index. Within the formula, .Ta is the air
temperature in degrees Celsius, and .V is the wind speed in kilometers per hour.

.WCI = 13.12 + 0.6215Ta − 11.37V 0.16 + 0.3965TaV
0.16

A similar formula, with different constant values, can be used for temperatures in
degrees Fahrenheit and wind speeds in miles per hour.

Write a program that begins by reading the air temperature and wind speed from
the user. Once these values have been read, your program should display the wind
chill index rounded to the closest integer.

1.7 Exercises 27

The wind chill index is only considered valid for temperatures less than or
equal to 10 degrees Celsius and wind speeds exceeding 4.8 kilometers per
hour.

Exercise 32: Celsius to Fahrenheit and Kelvin
(17 Lines)

Write a program that begins by reading a temperature from the user in degrees
Celsius. Then your program should display the equivalent temperature in degrees
Fahrenheit and Kelvin. The calculations needed to convert between different units
of temperature can be found on the Internet.

Exercise 33: Units of Pressure
(20 Lines)

In this exercise, you will create a program that reads a pressure from the user in kilo-
pascals. Once the pressure has been read, your program should report the equivalent
pressure in pounds per square inch, millimeters of mercury and atmospheres. Use
your research skills to determine the conversion factors between these units.

Exercise 34: Sum the Digits
(18 Lines)

Develop a program that reads a four-digit integer from the user and displays the sum
of its digits. For example, if the user enters 3141 then your program should display
3.+1.+4.+1.=9.

Exercise 35: Sort 3 Integers
(Solved, 19 Lines)

Create a program that reads three integers from the user and displays them in sorted
order (from smallest to largest). Use the min and max functions to find the smallest
and largest values. The middle value can be found by computing the sum of all three
values, and then subtracting the minimum value and the maximum value.

28 1 Introduction to Programming

Exercise 36: Day Old Bread
(Solved, 19 Lines)

A bakery sells loaves of bread for $3.49 each. Day old bread is discounted by 60%.
Write a program that begins by reading the number of loaves of day old bread being
purchased from the user. Then your program should display the regular price for the
bread, the discount because it is a day old, and the total price. Each of these amounts
should be displayed on its own line with an appropriate label. All of the values should
be displayed with comma separators and two decimal places, and the decimal points
in all of the numbers should be aligned when reasonable values are entered by the
user.

Exercise 37: Length of a Spiral
(16 Lines)

A spiral is a curved line that begins at a central point and circles around it at ever
increasing distances, forming a series of connected rings.When the distance between
the spiral’s adjacent rings is constant, the length of a spiral can be computed using
the following formula:

.length = π × number of rings × first diameter + last diameter

2
Use this information to create a program that reads the number of rings, the average
diameter of the first (smallest) ring, and the average diameter of the last (largest)
ring, from the user. Then your program should compute and display the length of the
spiral. Round the length of the spiral to one decimal place when it is displayed.

2Decision-Making

The programs that you worked with in Chap. 1 were strictly sequential. Each pro-
gram’s statements were executed in sequence, starting from the beginning of the
program, and continuing without interruption to its end. While sequential execution
of every statement in a program can be used to solve some small exercises, it is not
sufficient to solve most interesting problems.

Decision-making constructs allow programs to contain statements that may or
may not be executed when the program runs. Execution still begins at the top of
the program and progresses toward the bottom, but some statements that are present
in the program may be skipped. This allows programs to perform different tasks
for different input values, and greatly increases the variety of problems that can be
solved.

2.1 If Statements

Python programs make decisions using if statements. An if statement includes a
condition and one or more statements that form the body of the if statement. When
an if statement is executed, its condition is evaluated to determine whether or not
the statements in its body will execute. If the condition evaluates to True, then the
body of the if statement executes, followed by the rest of the statements in the
program. If the condition evaluates to False, then the body of the if statement is
skipped, and execution continues at the first line after the body of the if statement.

The condition on an if statement can be an arbitrarily complex expression that
evaluates to either True or False. Such an expression is called a Boolean expres-
sion, named after George Boole (1815–1864), who was a pioneer in binary logic.
An if statement’s condition often includes a relational operator that compares two

© Springer Nature Switzerland AG 2025
B. Stephenson, The Python Workbook, Texts in Computer Science,
https://doi.org/10.1007/978-3-031-84560-4_2

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_2&domain=pdf
https://doi.org/10.1007/978-3-031-84560-4_2
https://doi.org/10.1007/978-3-031-84560-4_2
https://doi.org/10.1007/978-3-031-84560-4_2
https://doi.org/10.1007/978-3-031-84560-4_2
https://doi.org/10.1007/978-3-031-84560-4_2
https://doi.org/10.1007/978-3-031-84560-4_2
https://doi.org/10.1007/978-3-031-84560-4_2
https://doi.org/10.1007/978-3-031-84560-4_2
https://doi.org/10.1007/978-3-031-84560-4_2
https://doi.org/10.1007/978-3-031-84560-4_2
https://doi.org/10.1007/978-3-031-84560-4_2

30 2 Decision-Making

values, variables or complex expressions. Python’s relational operators are listed
below.

Relational Operator Meaning
. < Less than
.<= Less than or equal to
.> Greater than
.>= Greater than or equal to
== Equal to
!= Not equal to

The body of an if statement consists of one or more statements that must be
indented more than the if keyword. It ends before the next line that is indented the
same amount as (or less than) the if keyword. All of the programs in this book use
two spaces to indent the body of an if statement, but you can use one space, or
several spaces, if you prefer. 1

The following program reads a number from the user, uses two if statements to
store a message describing the number into result, and then displays the message.
Each if statement’s condition uses a relational operator to determine whether or
not its body, which is indented, will execute. A colon immediately follows each
condition. It separates the if statement’s condition from its body.

2.2 If-Else Statements

The previous example stored one message into result when the number entered by
the user was zero, and it stored a different message into result when the entered
number was non-zero. More generally, the conditions on the if statements were
constructed so that exactly one of the two if statement bodies would execute. There

1 Most programmers choose to use the same number of spaces every time they indent the body of
an if statement, though Python does not require this consistency. However, consistent indenting is
required for the statements within each if statement’s body.

2.3 If-Elif-Else Statements 31

is no way for both bodies to execute, and there is no way for neither body to execute.
Such conditions are said to be mutually exclusive.

An if-else statement consists of an if part with a condition and a body, and an
else part with a body (but no condition). When the statement executes, its condition
is evaluated. If the condition evaluates to True, then the body of theif part executes,
and the body of the else part is skipped. When the condition evaluates to False,
the body of the if part is skipped, and the body of the else part executes. It is
impossible for both bodies to execute, and it is impossible to skip both bodies.

Two if statements can be replaced with an if-else statement when one if
statement immediately follows the other, the firstif statement’s body doesn’t modify
a value included in the second if statement’s condition, and the conditions on the
if statements are mutually exclusive. Using an if-else statement is preferable
because only one condition needs to be written, only one condition needs to be
evaluated when the program executes, and only one condition needs to be corrected
if a bug is discovered at some point in the future. The program that reports whether or
not a value is zero, rewritten so that it uses an if-else statement, is shown below.

When the number entered by the user is zero, the condition on the if-else
statement evaluates to True, so the body of the if part of the statement executes,
and the appropriate message is stored into result. Then the body of the else
part of the statement is skipped. When the number is non-zero, the condition on the
if-else statement evaluates to False, so the body of the if part of the statement
is skipped. Since the body of the if part was skipped, the body of the else part is
executed, storing a different message into result. In either case, Python goes on
and runs the rest of the program, which displays the message.

2.3 If-Elif-Else Statements

An if-elif-else statement is used to execute exactly one of several alternatives.
The statement begins with an if part, followed by one or more elif parts, followed
by an else part. All of these parts must include a body that is indented. Each of the
if and elif parts must also include a condition that evaluates to either True or
False.

32 2 Decision-Making

When an if-elif-else statement is executed, the condition on the if part is
evaluated first. If it evaluates to True, then the body of the if part is executed, and
all of the elif and else parts are skipped. But if the if part’s condition evaluates
to False, then its body is skipped, and Python goes on and evaluates the condition
on the first elif part. If this condition evaluates to True, then the body of the
first elif part executes, and all of the remaining conditions and bodies are skipped.
Otherwise, Python continues by evaluating the conditions for each elif part in
sequence. This continues until a condition is found that evaluates to True. Then the
body associated with that condition is executed, and the remaining elif and else
parts are skipped. If Python reaches the else part of the statement (because all of
the conditions on the if and elif parts evaluated to False), then it executes the
body of the else part.

Consider an extension of the previous example where one message is displayed
for positive numbers, a different message is displayed for negative numbers, and yet
another different message is displayed if the number is zero. While this problem
could be solved using a combination of if and/or if-else statements, it is well
suited to an if-elif-else statement because exactly one of three alternatives
must be executed.

When the user enters a positive number, the condition on the if part of the
statement evaluates to True, so the body of the if part executes. Once the body of
the if part has executed, the program continues by executing the print statement
on its final line. The bodies of both the elif part and the else part were skipped
without evaluating the condition on the elif part of the statement.

When the user enters a negative number, the condition on the if part of the
statement evaluates to False. Python skips the body of the if part and goes on and
evaluates the condition on the elif part of the statement. This condition evaluates
to True, so the body of the elif part is executed. Then the else part is skipped,
and the program continues by executing the print statement.

Finally, when the user enters zero, the condition on the if part of the statement
evaluates to False, so the body of the if part is skipped, and Python goes on and
evaluates the condition on the elif part. Its condition also evaluates to False, so
Python goes on and executes the body of the else part. Then the final print statement
is executed.

2.5 Nested If Statements 33

Exactly one of several options is executed by an if-elif-else statement. The
statement begins with an if part, followed by as many elif parts as needed. The
else part always appears last, and its body only executes when all of the conditions
on the if and elif parts evaluate to False.

2.4 If-Elif Statements

Theelse that appears at the end of anif-elif-else statement is optional. When
the else is present, the statement selects exactly one of several options. Omitting the
else selects at most one of several options. When an if-elif statement is used,
none of the bodies execute when all of the conditions evaluate to False. Whether
one of the bodies executes, or not, the program will continue executing at the first
statement after the body of the final elif part.

2.5 Nested If Statements

The body of an if part, elif part or else part can contain any Python statement,
including another if, if-else, if-elif or if-elif-else statement. When
one if statement (of any type) appears in the body of another if statement (of any
type) the if statements are said to be nested. The following program includes a
nested if statement.

34 2 Decision-Making

This program begins by reading a number from the user. If the number is greater
than zero, then the body of the outer if statement is executed. Its body includes a
nested if statement which determines what adjective, if any, should be displayed
when reporting that a positive number was entered. The inner statement stores
really big in adjective if the entered number is at least 1,000,000, and
it stores big in adjective if the entered number is at least 1,000 but less than
1,000,000. Otherwise, the empty string is stored in adjective. The final line in the
body of the outer if part stores the complete message in result. Then the bodies
of the outer elif part and the outer else part are skipped because the body of the
outer if part was executed. Finally, the program completes by executing the print
statement that reports the result.

Now consider what happens if the number entered by the user is less than or equal
to zero. When this occurs, the body of the outer if statement is skipped, and either
the body of the outer elif part or the body of the outer else part is executed. Both
of these cases store an appropriate message in result. Then execution continues
with the print statement at the end of the program.

2.6 Boolean Logic

A Boolean expression is an expression that evaluates to either True or False.
The expression can include a wide variety of elements, such as the Boolean values
True and False, variables containing Boolean values, relational operators, and
calls to functions that return Boolean results. Boolean expressions can also include
Boolean operators that combine and manipulate Boolean values. Python includes
three Boolean operators: not, and, and or.

The not operator reverses the truth of a Boolean expression. If the expression,
x, which appears to the right of the not operator, evaluates to True, then not x
evaluates to False. If x evaluates to False, then not x evaluates to True.

The behavior of any Boolean expression can be described by a truth table. A
truth table has one column for each distinct variable in the Boolean expression, as
well as a column for the expression itself. Each row in the truth table represents
one combination of True and False values. A truth table for an expression that
includes . n distinct variables has .2n rows, each of which show the result computed
by the expression for a different combination of values. The truth table for the not
operator, which is applied to a single variable, x, has .21 = 2 rows, as shown below.

x not x
False True
True False

The and and or operators combine two Boolean values to compute a Boolean
result. The Boolean expression x and y evaluates to True if x is True and y is

2.7 Debugging 35

also True. If x is False, or y is False, or both x and y are False, then x and
y evaluates to False. The truth table for the and operator is shown below. It has
.22 = 4 rows because the and operator is applied to two variables.

x y x and y
False False False
False True False
True False False
True True True

The Boolean expression x or y evaluates to True if x is True, or if y is True,
or if both x and y are True. It only evaluates to False if both x and y are False.
The truth table for the or operator is shown below:

x y x or y
False False False
False True True
True False True
True True True

The following program uses the or operator to determine whether or not the value
entered by the user is one of the first 5 prime numbers. The and and not operators
can be used to construct a complex condition in a similar manner.

2.7 Debugging

If statements present new opportunities to introduce syntax errors, runtime errors,
and logic errors into your programs. Some examples of these errors, and how to
correct them, are explored in the remainder of this section.

36 2 Decision-Making

2.7.1 Syntax Errors

Syntax errors continue to be relatively easy to identify and correct because the error
message that is displayed includes the information needed to locate the error. Com-
mon syntax errors involving if statements include failing to include the colon after
an if or elif part’s condition, writing a condition that includes unbalanced paren-
theses, inadvertently including a condition after an else, and inadvertently using
= instead of == when comparing values. Inconsistent indenting within the body of
an if, elif or else part is also a syntax error. The error message below was dis-
played by Python when a program attempted to compare two values using = instead
of ==. The error can be corrected by adding the missing = character.

2.7.2 Runtime Errors

Using if statements also provides additional opportunities to inadvertently introduce
runtime errors into your programs. For example, attempting to compare two values
with incompatible types (such as a string and an integer) using the inequality operators
. <, .<=, . >, and .>= is a type error that will be detected as your program is running.
This error is corrected by ensuring that the operands to the left and the right of
the inequality operator have compatible types, either by modifying the condition
or by converting the value to a different type earlier in the program. For example,
sometimes a type error occurs because the programmer forgot to convert a value
entered by the user to the correct type when it was initially read. A program that
includes such an error is shown below. Notice that the first value read from the user
is not converted to a floating-point number, but the second input value is.

2.7 Debugging 37

The type error reported by Python is shown below. It can be corrected by converting
the first value entered by the user to a floating-point value by calling the float
function when it is read.

A Python program terminates with a NameError when the program attempts
to access a variable that has not previously been assigned a value. In many cases,
this error is the result of a typo in the variable’s name, but it can also be caused by
assigning a value to a variable along some paths through the program, but not others.
Consider the program below:

It is supposed to report whether water is ice or liquid, based on the temperature
entered by the user. The program works as intended when the user enters a tempera-
ture near the freezing point. However, if the user enters 32 degrees, then the program
terminates with a NameError, because neither the body of the if nor the body of
the else executes. This causes the print statement to attempt to display the value of
state when it has not previously been assigned a value. The error can be corrected
by adjusting the condition on either the if or the elif statement, so that it includes
the case when the temperature is exactly 32 degrees. Alternatively, an else could
be added so that 32 degrees is handled as a separate case.

2.7.3 Logic Errors

Sometimes the body of anif statement executes when the programmer does not want
it to. At other times, the body of an if statement is skipped when the programmer
wants it to execute. Inadvertently reversing the direction of an inequality operator is
one common source of these problems. It is remarkably easy to inadvertently write
less than, or less than or equal to, when greater than, or greater than or equal to, is
intended, and vice versa. Such a reversal is a logic error. This kind of error can be
detected by carefully observing the behavior of your program. Its behavior can be
made more explicit by adding a print statement to the beginning of the body of the if

38 2 Decision-Making

statement that is not working as intended. In fact, adding multiple, even many, print
statements to a program is a common tactic for better understanding exactly which
parts of it are executing, and which parts are being skipped. These print statements
may simply display a message indicating that a particular point in the program has
been reached, or they may be expanded to include the values of one or more variables
to further increase the programmer’s understanding of why a particular if statement
body is executing (or not). While the exact message being printed isn’t particularly
important, it is important that each statement displays something different, so that it
is easy to ascertain which print statements executed and which did not.

Accidental inclusion or omission of an = character adjacent to a greater than or less
than character is another common logic error. This error is more subtle than reversal
of the greater than and less than symbols, because the body of the if statement is
executed or skipped as intended in most cases, but the intended behavior does not
occur when the values being compared are equal. Adding print statements to the top
of the body of each if, elif and else can make this error more explicit and easier
to resolve. It also highlights the importance of testing programs with a variety of
values, including those that are at the edges of the ranges being compared.

2.8 Exercises

The following exercises should be completed using if, if-else, if-elif, and
if-elif-else statements, together with the concepts that were introduced in
Chap. 1. You may also find it helpful to nest an if statement inside the body of
another if statement in some of your solutions.

Exercise 38: Even or Odd?
(Solved, 13 Lines)

Write a program that reads an integer from the user. Then your program should
display a message indicating whether the integer is even or odd.

Exercise 39: Dog Years
(22 Lines)

It is commonly said that one human year is equivalent to 7 dog years. However, this
simple conversion fails to recognize that dogs reach adulthood in approximately two
years. As a result, some people believe that it is better to count each of the first two
human years as 10.5 dog years, and then count each additional human year as 4 dog
years.

2.8 Exercises 39

Write a program that implements the conversion from human years to dog years
described in the previous paragraph. Ensure that your program works correctly for
conversions of less than two human years, and for conversions of two or more human
years. Your program should display an appropriate error message if the user enters
a negative number.

Exercise 40: Vowel or Consonant
(Solved, 16 Lines)

In this exercise, you will create a program that reads a letter of the alphabet from the
user. If the user enters a, e, i, o or u, then your program should display a message
indicating that the entered letter is a vowel. If the user enters y, then your program
should display a message indicating that sometimes y is a vowel and sometimes y is
a consonant. Otherwise, your program should display a message indicating that the
letter is a consonant.

Exercise 41: Name that Shape
(Solved, 31 Lines)

Write a program that determines the name of a shape from its number of sides. Read
the number of sides from the user and then report the appropriate name as part of
a meaningful message. Your program should support shapes with anywhere from 3
up to (and including) 10 sides. If a number of sides outside of this range is entered,
then your program should display an appropriate error message.

Exercise 42: Month Name to Number of Days
(Solved, 20 Lines)

The length of a month varies from 28 to 31 days. In this exercise, you will create
a program that reads the name of a month from the user as a string. Then your
program should display the number of days in that month. Display “28 or 29 days”
for February so that leap years are addressed.

40 2 Decision-Making

Exercise 43: Sound Levels
(30 Lines)

The following table lists the sound level in decibels for several common noises.

Noise Decibel Level
Jackhammer 130 dB
Gas Lawnmower 106 dB
Alarm Clock 70 dB
Quiet Room 40 dB

Write a program that reads a sound level in decibels from the user. If the user enters
a decibel level that matches one of the noises in the table, then your program should
display a message containing only that noise. If the user enters a number of decibels
between the noises listed, then your program should display a message indicating
which noises the value is between. Ensure that your program also generates reason-
able output for a value smaller than the quietest noise in the table, and for a value
larger than the loudest noise in the table.

Exercise 44: Classifying Triangles
(Solved, 21 Lines)

A triangle can be classified based on the lengths of its sides as equilateral, isosceles or
scalene. All three sides of an equilateral triangle have the same length. An isosceles
triangle has two sides that are the same length, and a third side that is a different
length. If all of the sides have different lengths, then the triangle is scalene.

Write a program that reads the lengths of the three sides of a triangle from the
user. Then display a message that states the triangle’s type.

Exercise 45: Note to Frequency
(Solved, 39 Lines)

The following table lists an octave of music notes, beginning with middle C, along
with their frequencies.

Note Frequency (Hz)
C4 261.63
D4 293.66
E4 329.63
F4 349.23
G4 392.00
A4 440.00
B4 493.88

2.8 Exercises 41

Begin by writing a program that reads the name of a note from the user and displays
the note’s frequency. Your program should support all of the notes listed previously.

Once you have your program working correctly for the notes listed previously,
you should add support for all of the notes from C0 to C8. While this could be
done by adding many additional cases to your if statement, such a solution is
cumbersome, inelegant and unacceptable for the purposes of this exercise. Instead,
you should exploit the relationship between notes in adjacent octaves. In particular,
the frequency of any note in octave. n is half the frequency of the corresponding note
in octave.n + 1. By using this relationship, you should be able to add support for the
additional notes without adding cases to your if statement.

Hint: You will want to access the characters in the note entered by the user
individually when completing this exercise. Begin by separating the letter from
the octave. Then compute the frequency for that letter in the fourth octave using
the data in the table above. Once you have this frequency, you should divide it
by .24−x , where . x is the octave number entered by the user. This will halve or
double the frequency the correct number of times.

Exercise 46: Frequency to Note
(Solved, 42 Lines)

In the previous question, you converted from a note’s name to its frequency. In this
question, you will write a program that reverses that process. Begin by reading a
frequency from the user. If the frequency is within one Hertz of a value listed in
the table in the previous question, then report the name of the corresponding note.
Otherwise, report that the frequency does not correspond to a known note. In this
exercise, you only need to consider the notes listed in the table. There is no need to
consider notes from other octaves.

Exercise 47: Faces on Money
(31 Lines)

It is common for images of a country’s previous leaders, or other individuals of his-
torical significance, to appear on its money. The individuals that appear on banknotes
in the United States are listed below.

42 2 Decision-Making

Individual Amount
George Washington $1
Thomas Jefferson $2
Abraham Lincoln $5
Alexander Hamilton $10
Andrew Jackson $20
Ulysses S. Grant $50
Benjamin Franklin $100

Write a program that begins by reading the denomination of a banknote from the user.
Then your program should display the name of the individual that appears on the
banknote of the entered amount. An appropriate error message should be displayed
if no banknote exists for the entered denomination.

While two-dollar banknotes are rarely seen in circulation in the United States,
they are legal tender that can be spent just like any other denomination. The
United States has also issued banknotes in denominations of $500, $1,000,
$5,000, and $10,000 for public use. However, high denomination banknotes
have not been printed since 1945 and were officially discontinued in 1969. As
a result, they will not be considered in this exercise.

Exercise 48: Date to Holiday Name
(18 Lines)

Canada has three national holidays which fall on the same dates each year.

Holiday Date
New Year’s Day January 1
Canada Day July 1
Christmas Day December 25

Write a program that reads a month and day from the user. If the month and day
match one of the holidays listed previously, then your program should display the
holiday’s name. Otherwise, your program should indicate that the entered month and
day do not correspond to a fixed-date holiday.

2.8 Exercises 43

Canada has two additional national holidays, Good Friday, and Labour Day,
whose dates vary from year to year. There are also numerous provincial and
territorial holidays, some of which have fixed dates, and some of which have
variable dates. These additional holidays will not be considered in this exercise.

Exercise 49: Birthstones
(Solved, 48 Lines)

Over time, traditions have arisen which allocate particular precious or semi-precious
gems to each month of the year. These gems are referred to as birthstones. The
Gemological Institute of America lists the following gems for each month:

Month Birthstone(s)
January Garnet
February Amethyst
March Aquamarine and Bloodstone
April Diamond
May Emerald
June Pearl, Alexandrite, and Moonstone
July Ruby
August Peridot, Spinel, and Sardonyx
September Sapphire
October Opal and Tourmaline
November Topaz and Citrine
December Tanzanite, Turquoise, and Zircon

Use the information above to create a program that reads a month from the user and
displays the birthstone(s) for that month. Your program should display an appropriate
error message if the user does not enter a valid month.

Exercise 50: What Color is that Square?
(22 Lines)

Positions on a chess board are identified by a letter and a number. The letter identifies
the column, while the number identifies the row, as shown below:

44 2 Decision-Making

Write a program that reads a position from the user. Use an if statement to determine if
the column begins with a black square or a white square. Then use modular arithmetic
to report the color of the square in that row. For example, if the user enters a1, then
your program should report that the square is black. If the user enters d5, then your
program should report that the square is white. Your program may assume that a
valid position will always be entered. It does not need to perform any error checking.

Exercise 51: Season from Month and Day
(Solved, 41 Lines)

The year is divided into four seasons: spring, summer, fall (or autumn) and winter.
While the exact dates that the seasons change vary a little bit from year to year, the
following dates will be used for this exercise:

Season First Day
Spring March 20
Summer June 21
Fall September 22
Winter December 21

Create a program that reads a month and day from the user. The user will enter the
name of the month as a string, followed by the day within the month as an integer.
Then your program should display the season associated with the date that was
entered.

2.8 Exercises 45

Exercise 52: Birth Date to Astrological Sign
(47 Lines)

The horoscopes commonly reported in newspapers and online use the position of the
sun at the time of one’s birth to try to predict the future. This system of astrology
divides the year into twelve zodiac signs, as outline in the table below:

Zodiac Sign Date Range
Capricorn December 22–January 19
Aquarius January 20–February 18
Pisces February 19–March 20
Aries March 21–April 19
Taurus April 20–May 20
Gemini May 21–June 20
Cancer June 21–July 22
Leo July 23–August 22
Virgo August 23–September 22
Libra September 23–October 22
Scorpio October 23–November 21
Sagittarius November 22–December 21

Write a program that asks the user to enter their month and day of birth. Then your
program should report the user’s zodiac sign as part of an appropriate output message.

Exercise 53: Chinese Zodiac
(Solved, 35 Lines)

The Chinese zodiac assigns animals to years in a 12-year cycle. One 12-year cycle
is shown in the table below. The pattern repeats from there, with 2036 being another
year of the dragon, and 2023 being another year of the hare.

Year Animal
2024 Dragon
2025 Snake
2026 Horse
2027 Sheep
2028 Monkey
2029 Rooster
2030 Dog
2031 Pig
2032 Rat
2033 Ox
2034 Tiger
2035 Hare

46 2 Decision-Making

Write a program that reads a year from the user, and displays the animal associated
with that year. Your program should work correctly for any year greater than or equal
to zero, not just the ones listed in the table.

Exercise 54: Richter Scale
(30 Lines)

The following table lists earthquake magnitude ranges on the Richter scale, and their
descriptors:

Magnitude Descriptor
Less than 2.0 Micro
2.0–less than 3.0 Very Minor
3.0–less than 4.0 Minor
4.0–less than 5.0 Light
5.0–less than 6.0 Moderate
6.0–less than 7.0 Strong
7.0–less than 8.0 Major
8.0–less than 10.0 Great
10.0 or more Meteoric

Write a program that reads a magnitude from the user and displays the appropriate
descriptor as part of a meaningful message. For example, if the user enters 5.5,
then your program should indicate that a magnitude 5.5 earthquake is a moderate
earthquake.

The Great Chilean Earthquake, which occurred in May of 1960, was the most
powerful earthquake ever recorded. Its magnitude was 9.5 on the Richter scale.

Exercise 55: Penalties for Speeding
(Solved, 39 Lines)

In a particular jurisdiction, the penalty for speeding includes both a fine and demerit
points applied to the speeder’s license. The fine is calculated by multiplying the
amount by which the driver was exceeding the speed limit by a penalty value, which
increases with the amount of excess speed, as listed below:

2.8 Exercises 47

Excess Speed Penalty For Each km/h
1–19 km/h $3.00
20–29 km/h $4.50
30–49 km/h $7.00

Demerit points are assigned for specific excess speed ranges, with more demerit
points assigned to greater excesses. The number of demerit points associated with
each speed range is listed below:

Excess Speed Demerit Points
1–15 km/h 0
16–29 km/h 3
30–49 km/h 4

Exceeding the speed limit by 50 km/h or more results in six demerit points and a
monetary penalty that is determined by a judge during a mandatory court appearance.

Create a program that begins by reading the amount that the user was traveling
in excess of the speed limit. Your program will then report the fine and number
of demerit points associated with the offense. Ensure that your program displays
appropriate results if the user enters a value less than or equal to 0 (which indicates
that they were not speeding), or if the user enters a value of 50 or more.

Exercise 56: Roots of a Quadratic Function
(24 Lines)

A univariate quadratic function has the form. f (x) = ax2 +bx +c, where. a,. b, and. c
are constants, and. a is non-zero. Its roots can be identified by finding the values of. x
that satisfy the quadratic equation.ax2 + bx + c = 0. These values can be computed
using the formula shown below. A quadratic function may have 0, 1, or 2 real roots.

. root = −b ± √
b2 − 4ac

2a

The portion of the expression under the square root sign is called the discriminant. If
the discriminant is negative, then the quadratic function does not have any real roots.
If the discriminant is 0, then the function has one real root. Otherwise, the function
has two real roots, and the expression must be evaluated twice, once using a plus
sign, and once using a minus sign, when computing the numerator.

Write a program that computes the real roots of a quadratic function. Your program
should begin by prompting the user for the values of. a,. b, and. c. Then it should display
a message that reports the number of real roots, along with the values of the real roots
(if any).

48 2 Decision-Making

Exercise 57: Letter Grade to Grade Points
(Solved, 52 Lines)

At a particular university, letter grades are mapped to grade points in the following
manner:

Letter Grade Points
A+ 4.0
A 4.0
A- 3.7
B+ 3.3
B 3.0
B- 2.7
C+ 2.3
C 2.0
C- 1.7
D+ 1.3
D 1.0
F 0

Write a program that begins by reading a letter grade from the user. Then your
program should compute and display the equivalent number of grade points. Ensure
that your program generates an appropriate error message if the user enters an invalid
letter grade.

Exercise 58: Grade Points to Letter Grade
(47 Lines)

In the previous exercise, you created a program that converted a letter grade into
the equivalent number of grade points. In this exercise, you will create a program
that reverses the process and converts a grade point value entered by the user to a
letter grade. Ensure that your program handles grade point values that fall between
letter grades appropriately. These should be rounded to the closest letter grade. Your
program should report A+ for a grade point value of 4.0 or more.

Exercise 59: Assessing Employees
(Solved, 29 Lines)

At a particular company, employees are rated at the end of each year. The rating scale
begins at 0.0, with higher values indicating better performance, and resulting in larger
raises. The value awarded to an employee is either 0.0, 0.4, or 0.6 or more. Values
between 0.0 and 0.4, and between 0.4 and 0.6, are never used. The meaning associated
with each rating is shown in the following table. The amount of an employee’s raise
is $2,400.00 multiplied by their rating.

2.8 Exercises 49

Rating Meaning
0.0 Unacceptable Performance
0.4 Acceptable Performance
0.6 or more Meritorious Performance

Write a program that reads a rating from the user and indicates whether the per-
formance for that rating is unacceptable, acceptable, or meritorious. The amount
of the employee’s raise should also be reported. Your program should display an
appropriate error message if an invalid rating is entered.

Exercise 60: Wavelengths of Visible Light
(38 Lines)

The wavelength of visible light ranges from 380 to 750 nanometers (nm). While the
spectrum is continuous, it is often divided into six colors, as shown below:

Color Wavelength (nm)
Violet 380–less than 450
Blue 450–less than 495
Green 495–less than 570
Yellow 570–less than 590
Orange 590–less than 620
Red 620–750

Write a program that reads a wavelength from the user and reports its color. Display
an appropriate error message if the wavelength entered by the user is outside of the
visible spectrum.

Exercise 61: Frequency to Name
(31 Lines)

Electromagnetic radiation can be classified into one of seven categories based on its
frequency, as shown in the table below:

50 2 Decision-Making

Name Frequency Range (Hz)

Radio Waves Less than . 3 × 109

Microwaves .3 × 109 to less than . 3 × 1012

Infrared Light .3 × 1012 to less than . 4.3 × 1014

Visible Light .4.3 × 1014 to less than . 7.5 × 1014

Ultraviolet Light .7.5 × 1014 to less than . 3 × 1017

X-Rays .3 × 1017 to less than . 3 × 1019

Gamma Rays .3 × 1019 or more

Write a program that reads the frequency of some radiation from the user and displays
the name of the radiation as part of an appropriate message.

Exercise 62: Cell Phone Bill
(44 Lines)

A particular cell phone plan includes 50 minutes of airtime and 50 text messages for
$15.00 a month. Each additional minute of airtime costs $0.25, while additional text
messages cost $0.15 each. All cell phone bills include an additional charge of $0.44
to support 911 call centers, and the entire bill (including the 911 charge) is subject
to 5.% sales tax.

Write a program that reads the number of minutes and text messages used in a
month from the user. Display the base charge, additional minutes charge (if any),
additional text message charge (if any), 911 fee, tax, and total. Only display the addi-
tional minute and text message charges if the user incurred costs in those categories.
Ensure that all of the charges are displayed using 2 decimal places.

Exercise 63: Is it a Leap Year?
(Solved, 22 Lines)

Most years have 365 days. However, the time required for the Earth to orbit the Sun
is actually slightly more than that. As a result, an extra day, February 29, is included
in some years to correct for this difference. Such years are referred to as leap years.
The rules for determining whether or not a year is a leap year follow:

• Any year that is divisible by 400 is a leap year.
• Of the remaining years, any year that is divisible by 100 is not a leap year.
• Of the remaining years, any year that is divisible by 4 is a leap year.
• All other years are not leap years.

Write a program that reads a year from the user and displays a message indicating
whether or not it is a leap year.

2.8 Exercises 51

Exercise 64: Next Day
(50 Lines)

Write a program that reads a date from the user and computes its immediate successor.
For example, if the user enters values that represent 18 November 2019, then your
program should display a message indicating that the day immediately after 18
November 2019 is 19 November 2019. The date will be entered in numeric form
with three separate input statements: one for the year, one for the month, and one
for the day. Ensure that your program behaves correctly when the user enters the last
day of a month or the last day of a year, and that it behaves correctly for leap years.

Exercise 65: What Day of the Week is January 1?
(32 Lines)

The following formula can be used to determine the day of the week for January 1
in a given year:

day_of_the_week = (year + floor((year - 1) / 4) - floor((year - 1) / 100) +
floor((year - 1) / 400)) % 7

The result calculated by this formula is an integer that represents the day of the week.
Sunday is represented by 0. The remaining days of the week follow in sequence
through to Saturday, which is represented by 6.

Use the formula above to write a program that reads a year from the user and
reports the day of the week for January 1 of that year. The output from your program
should include the full name of the day of the week, not just the integer returned by
the formula.

Exercise 66: Is a License Plate Valid?
(Solved, 28 Lines)

In a particular jurisdiction, older license plates consist of three uppercase letters
followed by three digits. When all of the license plates following that pattern had
been used, the format was changed to four digits followed by three uppercase letters.

Write a program that begins by reading a string of characters from the user. Then
your program should display a message that indicates whether the characters are
valid for an older-style license plate or a newer-style license plate. Your program
should display an appropriate message if the string entered by the user is not valid
for either style.

52 2 Decision-Making

Exercise 67: Roulette Payouts
(Solved, 45 Lines)

A roulette wheel has 38 spaces on it. Of these spaces, 18 are black, 18 are red, and 2
are green. The green spaces are numbered 0 and 00, the red spaces are numbered 1,
3, 5, 7, 9, 12, 14, 16, 18, 19, 21, 23, 25, 27, 30, 32, 34, and 36, and the black spaces
are numbered with the remaining integers between 1 and 36.

Many different bets can be placed in roulette. Only the following subset of them
will be considered in this exercise:

• Single number (1–36, 0, or 00)
• Red or Black
• Odd or Even (Note that 0 and 00 do not pay out for even)
• 1–18 or 19–36

Write a program that simulates a spin of a roulette wheel by using Python’s random
number generator. Display the number that was selected and all of the bets that must
be paid. For example, if 13 is selected, then your program should display:

The spin resulted in 13...
Pay 13
Pay Black
Pay Odd
Pay 1 to 18

If the simulation results in 0 or 00, then your program should only display Pay
0 or Pay 00 after the result of the spin.

Exercise 68: Jersey Numbers
(45 Lines)

Each player in the National Football League has a number on their jersey. This
number helps fans identify the players, and also indicates the player’s position. The
numbers allocated to each position have varied a little bit over the years. During the
2020 season, the numbers that corresponded to each position were:

Offensive positions:

• Quarterbacks: 1–19
• Punters and placekickers: 1–19
• Wide receivers: 10–19 and 80–89
• Running backs: 20–49
• Tight ends: 40–49 and 80–89
• Offensive linemen: 50–79

2.8 Exercises 53

Defensive positions:

• Defensive backs: 20–49
• Defensive linemen: 50–79 and 90–99
• Linebackers: 40–59 and 90–99

Write a program that reads a player’s number and an indication of whether the player
is a member of the offense or the defense. Then your program will list all of the
positions that the player could be playing. For example, if the user enters number
44 and indicates that it is for a member of the offense, then your program should
report that the player is a running back or tight end. If the user enters number 77
and indicates that it is for a member of the defense, then your program should report
that the player is a defensive lineman. An error message should be displayed if the
user fails to correctly indicate if the player is a member of the offense or the defense.
Your program should also display an appropriate error message if a number outside
of 1–99 is entered, or if the number entered does not correspond to any position for
the offense or defense designation provided.

3Repetition

How would you write a program that repeats the same task multiple times? You
could copy the code and paste it several times, but such a solution is inelegant. It
only allows the task to be performed a fixed number of times, and any enhancements
or corrections need to be made to every copy of the code.

Python provides two looping constructs that overcome these limitations. Both
types of loop allow statements that occur only once in your program to execute
multiple times when your program runs. When used effectively, loops can perform
a large number of calculations with a small number of statements.

3.1 While Loops

A while loop causes one or more statements to execute as long as, or while, a
condition evaluates to True. Like an if statement, a while loop has a condition
that is followed by a body which is indented. If the while loop’s condition evaluates
to True, then the body of the loop is executed. When the bottom of the loop’s body is
reached, execution returns to the top of the loop, and the loop condition is evaluated
again. If the condition still evaluates to True, then the body of the loop executes for
a second time. Once the bottom of the loop’s body is reached for the second time,
execution once again returns to the top of the loop. The loop’s body continues to
execute until the while loop’s condition evaluates to False. When this occurs, the
loop’s body is skipped, and execution continues at the first statement after the body
of the while loop.

Many while loop conditions compare a variable holding a value read from the
user to some other value. When the value is read from the user within the loop, the
user is able to terminate the loop by entering a value that causes the loop’s condition

© Springer Nature Switzerland AG 2025
B. Stephenson, The Python Workbook, Texts in Computer Science,
https://doi.org/10.1007/978-3-031-84560-4_3

55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_3&domain=pdf
https://doi.org/10.1007/978-3-031-84560-4_3
https://doi.org/10.1007/978-3-031-84560-4_3
https://doi.org/10.1007/978-3-031-84560-4_3
https://doi.org/10.1007/978-3-031-84560-4_3
https://doi.org/10.1007/978-3-031-84560-4_3
https://doi.org/10.1007/978-3-031-84560-4_3
https://doi.org/10.1007/978-3-031-84560-4_3
https://doi.org/10.1007/978-3-031-84560-4_3
https://doi.org/10.1007/978-3-031-84560-4_3
https://doi.org/10.1007/978-3-031-84560-4_3
https://doi.org/10.1007/978-3-031-84560-4_3

56 3 Repetition

to evaluate to False. For example, the following code segment reads values from
the user and reports whether each value is positive or negative. The loop terminates
when the user enters 0. Neither message is displayed in that case.

This program begins by reading an integer from the user. If the integer is 0, then
the condition on the while loop evaluates to False. When this occurs, the loop
body is skipped and the program terminates without displaying any output (other
than the prompt for input). If the condition on the while loop evaluates to True
(because the user entered a non-zero value), then the body of the loop executes.

When the loop body executes, the value entered by the user is compared to 0 using
an if statement, and the appropriate positive or negative message is displayed. Then
the next input value is read from the user at the end of the loop’s body. Since the
bottom of the loop has been reached, control returns to the top of the loop and its
condition is evaluated again. If the most recent value entered by the user is 0, then the
condition evaluates to False. When this occurs, the body of the loop is skipped and
the program terminates. Otherwise, the body of the loop executes again and another
positive or negative message is displayed. The loop continues to execute until the
user causes its condition to evaluate to False by entering 0.

3.2 For Loops

Like while loops, for loops cause statements that only appear in a program once
to execute several times when the program runs. However, the mechanism used to
determine how many times those statements will execute is rather different for a for
loop.

A for loop executes once for each item in a collection. The collection can be
a range of integers, the letters in a string, or as will be described in later chapters,
the values stored in a data structure, such as a list. The syntactic structure of a for

3.2 For Loops 57

loop is shown below, where <variable>, <collection>, and <body> are
placeholders that must be filled in appropriately.

The body of the loop consists of one or more Python statements that may be
executed multiple times. In particular, these statements will execute once for each
item in the collection. Like a while loop body, the body of a for loop is indented.

Each item in <collection> is copied into <variable> before the loop body
executes for that item. The variable is created by the for loop when it executes. It is
not necessary to create it with an assignment statement, and any value that might have
been assigned to it previously is overwritten at the beginning of each loop iteration.
The variable can be used in the body of the loop just like any other Python variable.

A collection of integers can be constructed by calling Python’s range function.
Calling range with one argument returns a range that starts with 0 and increases up
to, but does not include, the value of the argument. For example, range(4) returns
a range consisting of 0, 1, 2, and 3.

When two arguments are provided to range, the collection of values returned
increases from the first argument up to, but not including, the second argument. For
example, range(4, 7) returns a range that consists of 4, 5, and 6. An empty
range is returned when range is called with two arguments and the first argument
is greater than or equal to the second. When the range is empty, the body of the
for loop is skipped, and execution continues with the first statement after the loop’s
body.

The range function can also be called with a third argument, which is the step
value used to move from the initial value in the range toward its final value. Using
a step value greater than 0 results in a range that begins with the first argument, and
increases up to, but does not include, the second argument, incrementing by the step
value each time. Using a negative step value allows a collection of decreasing values
to be constructed. For example, while range(0, -4) returns an empty range,
range(0, -4, -1) returns a range that consists of 0, -1, -2, and -3. Note that
the step value passed to range as its third argument must be an integer. Problems
which require a non-integer step value are often solved with a while loop instead
of a for loop because of this restriction.

The following program uses a for loop and the range function to display all
of the positive multiples of 3 up to (and including) a value entered by the user.

58 3 Repetition

When this program executes, it begins by reading an integer from the user. Assume
that the user entered 11 for this particular run of the program. After the input value
is read, execution continues with the print statement that describes the program’s
output. Then the for loop begins to execute.

A range of integers is constructed that begins with 3, and goes up to, but does not
include, .11 + 1 = 12, stepping up by 3 each time. Thus, the range consists of 3,
6, and 9. When the loop executes for the first time, the first integer in the range is
assigned to i, the body of the loop is executed, and 3 is displayed.

Once the loop’s body has finished executing for the first time, control returns to
the top of the loop and the next value in the range, which is 6, is assigned to i. The
body of the loop executes again and displays 6. Then control returns to the top of
the loop for a second time.

The next value assigned to i is 9. It is displayed the next time the loop’s body
executes. Then the loop terminates because there are no further values in the range.
Normally, execution would continue with the first statement after the body of thefor
loop. However, there is no such statement in this program, so the program terminates.

3.3 Nested Loops

The statements inside the body of a loop can include another loop. When this happens,
the inner loop is said to be nested inside the outer loop. Any type of loop can be
nested inside any other type of loop. For example, the following program uses a for
loop nested inside a while loop to repeat messages entered by the user until the
user enters a blank message.

When this program executes, it begins by reading the first message from the user.
If that message is not blank, then the body of the while loop executes and the
program reads the number of times to repeat the message, n, from the user. A range
of integers is created from 0 up to, but not including, n. Then the body of the for
loop prints the message n times because the message is displayed once for each
integer in the range.

3.4 Debugging 59

The next message is read from the user after the for loop has executed n times.
Then execution returns to the top of the while loop, and its condition is evaluated.
If the condition evaluates to True, then the body of the while loop runs again.
Another integer is read from the user, which overwrites the previous value of n, and
then the for loop prints the message n times. This continues until the condition on
the while loop evaluates to False. When that occurs, the body of the while loop
is skipped and the program terminates because there are no statements to execute
after the body of the while loop.

3.4 Debugging

Both for loops and while loops can execute the statements in the loop’s body
zero times, one time, or many times. The loop will only solve the intended problem
if it executes the correct number of times. When a loop executes the wrong number
of times, it may result in a runtime error, or it may result in a logic error. It’s also
possible to write a program that continues running indefinitely. These errors, and
others, are examined in the sections that follow.

3.4.1 Syntax Errors

The syntax errors that arise with while loops are similar to those encountered with
if statements, with an improperly structured condition, a missing colon, or improper
indenting being particularly common. In each of these cases, Python will provide
an error message that includes the line number where the error occurred, which
makes the error relatively easy to locate and correct. Common syntax errors related
to for loops include omitting in, a missing colon, or improper indenting. The error
messages reported in these cases also contain information that will help you find and
correct the error.

3.4.2 Runtime Errors

When a for loop executes, the loop’s control variable is created automatically, but
other variables accessed in the loop need to be initialized appropriately ahead of
the loop. Similarly, the programmer must initialize variables accessed in a while
loop before the loop begins to execute. Attempting to access a variable inside a loop
before the variable has been initialized will result in a NameError, as described

60 3 Repetition

previously in Sect. 2.7.2. For example, the program below is supposed to count the
number of values entered by the user.

When it executes, it crashes with the error message shown below because count =
count + 1 can only execute successfully if count has previously been assigned
a value.

The error is corrected by setting count equal to 0 ahead of the loop.
Runtime errors can also occur when a for loop iterates over the wrong collection

of values. For example, one might want to create a table that shows the decimal
representations of fractions from.

1
1 to .

1
10 . The program below attempts to solve this

problem, but it crashes with a zero division error before it displays any of its expected
output.

The zero division error is corrected by calling range with two arguments so that
the loop begins counting at 1 instead of 0.

In both of these cases, the line number provided in the error message was the
location where Python detected the error, but it was not the location that needed to
be changed. Both the correction that was needed, and where it was needed, had to
be identified by the programmer. This requires a thorough understanding of both the
problem that is being solved and the code that is attempting to solve it.

3.4.3 Logic Errors

The fraction printing program presented in Section 3.4.2 contained a logic error,
in addition to the runtime error discussed previously. Once the zero division error
is corrected by calling range with two arguments, the program will display the
decimal values of fractions from.

1
1 to .

1
9 , but it fails to display .

1
10 because the loop’s

3.5 Exercises 61

body runs one fewer time than intended. This is referred to as an off-by-one error 1 .
Like the logic errors that have been described in previous chapters, this error can
only be detected by examining the output from the program and comparing it to the
expected result. The error is corrected by increasing the second argument to range
from 10 to 11, because the second argument provided to range is exclusive.

Another common logic error in programs that include loops is initializing a vari-
able to the wrong value before the loop. Adding print statements that display the
relevant variables ahead of the loop can help the programmer determine whether the
problem is before the loop or within it. Additional print statements can also be added
to the loop’s body to better understand how the values are changing from one loop
iteration to the next. Once these print statements have been added, you will want to
choose input values that only cause the loop’s body to run a small number of times.
Otherwise, the output that is generated will be too large to analyze by hand.

3.4.3.1 Infinite Loops
The logic errors that have been discussed previously cause the program to display
incorrect results. Once a program contains loops, it is also possible that the program
will not produce any output because it is stuck in a loop that never ends. When this
occurs, the loop’s body runs over and over again, and execution is unable to move
on to the later parts of the program. Such a never-ending loop is referred to as an
infinite loop.

Two common causes of an infinite loop are an incorrectwhile loop condition that
always evaluates to True, and failing to include a statement in the body of a while
loop that changes one of the variables in the loop’s condition. For example, failing
to read the next input value from the user in the loop’s body can result in an infinite
loop. Infinite loops are easily detected by printing a value inside the loop’s body. If
that value continues to be printed indefinitely, then the program contains an infinite
loop that must be corrected. Unfortunately, like other logic errors, the programmer
must find and correct the infinite loop without an error message to guide their search.

3.5 Exercises

The following exercises should all be completed with loops. In some cases, the
exercise specifies what type of loop to use. In other cases, you must make this decision
yourself. Some of the exercises can be completed easily with both for loops and
while loops. Other exercises are much better suited to one type of loop than the
other. In addition, some of the exercises require multiple loops. When multiple loops

1 An error that causes a loop’s body to run one more time than intended is also referred to as an
off-by-one error.

62 3 Repetition

are involved, one loop might need to be nested inside the other. Carefully consider
your choice of loops as you design your solution to each problem.

Exercise 69: Average
(26 Lines)

In this exercise, you will create a program that computes the average of a collection
of values entered by the user. The user will enter 0 as a sentinel value to indicate
that no further values will be provided. Your program should display an appropriate
error message if the first value entered by the user is 0.

Hint: Because the 0 marks the end of the input, it should not be included in
the average.

Exercise 70: Discount Table
(18 Lines)

A particular retailer is having a 60 percent off sale on a variety of discontinued
products. The retailer would like to help its customers determine the reduced price
of the merchandise by having a printed discount table on the shelf that shows the
original prices and the prices after the discount has been applied. Write a program
that uses a loop to generate a table that shows the original price, the discount amount,
and the new price, for purchases of $4.95, $9.95, $14.95, $19.95, and $24.95. Ensure
that the discount amounts and the new prices are rounded to 2 decimal places when
they are displayed.

Exercise 71: Temperature Conversion Table
(22 Lines)

Write a program that displays a temperature conversion table for degrees Celsius and
degrees Fahrenheit. The table should include rows for all temperatures between 0
and 100 degrees Celsius that are multiples of 10 degrees Celsius. Include appropriate
headings on the columns. The formula for converting between degrees Celsius and
degrees Fahrenheit can be found on the Internet.

3.5 Exercises 63

Exercise 72: No More Pennies
(Solved, 36 Lines)

February 4, 2013, was the last day that pennies were distributed by the Royal Cana-
dian Mint. Now that pennies have been phased out, retailers must adjust totals so that
they are multiples of 5 cents when purchases are paid for with cash (credit card and
debit card transactions continue to be charged to the penny). While retailers have
some freedom in how they do this, most choose to round to the closest nickel.

Write a program that reads prices from the user until a blank line is entered. Dis-
play the total cost of all the entered items on one line, followed by the amount due
if the customer pays with cash on a second line. The amount due for a cash pay-
ment should be rounded to the nearest nickel. One way to compute the cash payment
amount is to begin by determining how many pennies would be needed to pay the
total. Then compute the remainder when this number of pennies is divided by 5.
Finally, adjust the total down if the remainder is less than 2.5. Otherwise, adjust the
total up.

Exercise 73: Compute the Perimeter of a Polygon
(Solved, 47 Lines)

Write a program that computes the perimeter of a polygon. Begin by reading the x-
and y-coordinates for the polygon’s first point from the user. Then continue read-
ing pairs of values until the user enters a blank line for the x-coordinate. Each time
an additional coordinate is read, the program should compute the distance to the
previous point and add it to the perimeter. When a blank line is entered for the x-
coordinate, the program should add the distance between the first and last points
to the perimeter. Then the perimeter should be displayed. Sample input and output
values are shown below. The input values entered by the user are shown in bold.

Enter the first x-coordinate: 0
Enter the first y-coordinate: 0
Enter the next x-coordinate (blank to quit): 1
Enter the next y-coordinate: 0
Enter the next x-coordinate (blank to quit): 0
Enter the next y-coordinate: 1
Enter the next x-coordinate (blank to quit):
The perimeter of that polygon is 3.414213562373095

Exercise 74: Compute a Grade Point Average
(62 Lines)

Exercise 57 includes a table that shows the conversion from letter grades to grade
points at a particular academic institution. In this exercise, you will use the data in
that table to compute the grade point average of an arbitrary number of letter grades

64 3 Repetition

entered by the user. The user will enter a blank line to indicate that all of the grades
have been provided and the average should be displayed. For example, if the user
enters A, followed by C+, followed by B, followed by a blank line, then your program
should report a grade point average of . 4.0+2.3+3.0

3 = 3.1.
You may find your solution to Exercise 57 helpful when completing this exercise.

No error checking needs to be performed by your program. It can assume that each
value entered by the user will be a valid letter grade or a blank line.

Exercise 75: Admission Price
(Solved, 38 Lines)

A particular zoo determines the price of admission based on the age of the guest.
Guests 2 years of age and less are admitted without charge. Children between 3 and
12 years of age cost $14.00. Seniors aged 65 years and over cost $18.00. Admission
for all other guests is $23.00.

Create a program that begins by reading the ages of all of the guests in a group
from the user, with one age entered on each line. The user will enter a blank line to
indicate that there are no more guests in the group. Then your program should display
the admission cost for the group with an appropriate message. The cost should be
displayed using two decimal places.

Exercise 76: Parity Bits
(Solved, 27 Lines)

A parity bit is a simple mechanism for detecting errors in data transmitted over an
unreliable connection such as a telephone line. The basic idea is that an additional bit
is transmitted after each group of 8 bits so that a single bit error in the transmission
can be detected.

Parity bits can be computed for either even parity or odd parity. If even parity
is selected, then the parity bit that is transmitted is chosen so that the total number
of one bits transmitted (8 bits of data plus the parity bit) is even. When odd parity
is selected, the parity bit is chosen so that the total number of one bits transmitted
is odd. Errors are detected by the receiver of the data by counting the number of one
bits. If even parity is being used, but the number of one bits received was odd, then
the receiver knows that an error occurred. Similarly, the receiver knows that an error
occurred if odd parity is being used, but the number of one bits received was even.

Write a program that computes the parity bit for groups of 8 bits entered by the
user using even parity. Your program should read strings containing 8 bits until the
user enters a blank line. After each string is entered by the user, your program should
display a clear message indicating whether the parity bit should be 0 or 1. Display
an appropriate error message if the user enters something other than 8 bits.

3.5 Exercises 65

Hint: You should read the input from the user as a string. Then you can either
use a loop or the count method to determine how many zeros and ones are
in the string. Information about the count method is available online.

Exercise 77: Approximate . π
(23 Lines)

The value of . π can be approximated by the following infinite series:

. π ≈ 3 + 4

2 × 3 × 4
− 4

4 × 5 × 6
+ 4

6 × 7 × 8
− 4

8 × 9 × 10
+ 4

10 × 11 × 12
−· · ·

Write a program that displays 15 approximations of. π . The first approximation should
make use of only the first term of the infinite series. Each additional approximation
displayed by your program should include one more term from the series, making it
a better approximation of . π than any of the approximations displayed previously.

Exercise 78: Fizz Buzz
(17 Lines)

Fizz buzz is a game that is sometimes played by children to help them learn about
division. The players are commonly arranged in a circle so that the game can progress
from player to player continually. The starting player begins by saying “one”, and
then play passes to the player to the left. Each subsequent player is responsible for
the next integer in sequence before play passes to the following player. On a player’s
turn, they must either say their number or one of the following substitutions:

• If the player’s number is divisible by 3, then the player says fizz instead of their
number.

• If the player’s number is divisible by 5, then the player says buzz instead of their
number.

A player must say both fizz and buzz for numbers that are divisible by both 3
and 5. Any player that fails to perform the correct substitution, or hesitates before
answering, is eliminated from the game. The last player remaining is the winner.

Write a program that displays the answers for the first 100 numbers in fizz buzz.
Each answer should be displayed on its own line.

66 3 Repetition

Exercise 79: Universal Product Codes
(Solved, 47 Lines)

Many products available for sale are marked with a Universal Product Code, com-
monly referred to as a UPC code or barcode. This code consists of alternating black
and white lines of various widths that encode a 12-digit number. Scanners are able
to read the barcode to identify the product. Then the price of the product is retrieved
from a database and added to the customer’s total.

The final digit in a universal product code is a check digit. This digit helps ensure
that the code was read correctly. A computer scanning the code can compare the
check digit computed from the first 11 digits of the code to the check digit that was
scanned. If the digits are different, then an error occurred when the code was read,
and it needs to be scanned again. The check digit is calculated using the algorithm
below.

Initialize total to 0
For each digit at even position (starting from 0)

Add three times the value of the digit to total
For each digit at odd position (up to and including 9)

Add the value of the digit to total
If total is evenly divisible by 10 then

The check digit is equal to 0
Else

The check digit is 10 minus the remainder when total is divided by 10

Write a program that reads a 12-digit number from the user. Determine whether
or not the entered number is a valid universal product code by computing the check
digit using the algorithm above and comparing it to the final digit entered by the
user. If the computed check digit matches the final digit in the provided number,
then your program should report that the entered value is a valid universal product
code. Otherwise, your program should report that the number is not a valid universal
product code, along with the correct check digit. Ensure that your program displays an
appropriate error message if the user enters something other than a 12-digit number.

Exercise 80: Caesar Cipher
(Solved, 35 Lines)

One of the first known examples of encryption was used by Julius Caesar. Caesar
needed to provide written instructions to his generals, but he didn’t want his enemies
to learn his plans if the message slipped into their hands. As a result, he developed
what later became known as the Caesar cipher.

The idea behind this cipher is simple (and as such, it provides no protection against
modern code breaking techniques). Each letter in the original message is shifted by
3 places. As a result, A becomes D, B becomes E, C becomes F, D becomes G, etc.

3.5 Exercises 67

The last three letters in the alphabet are wrapped around to the beginning: X becomes
A, Y becomes B, and Z becomes C. Non-letter characters are not modified by the
cipher.

Write a program that implements a Caesar cipher. Allow the user to supply the
message and the shift amount, and then display the shifted message. Ensure that
your program encodes both uppercase and lowercase letters correctly. Your program
should support negative shift values so that it can be used to both encode and decode
messages.

Exercise 81: Square Root
(14 Lines)

Write a program that implements Newton’s method to compute and display the square
root of a number,. x , entered by the user. The algorithm for Newton’s method follows:

Read x from the user
Initialize guess to x /2
While guess is not good enough do

Update guess to be the average of guess and x /guess

When this algorithm completes, guess contains an approximation of the square
root of . x . The quality of the approximation depends on how you define “good
enough”. In the author’s solution, guess was considered good enough when the
absolute value of the difference between guess . ∗ guess and. x was less than or equal
to .10−12.

Exercise 82: Is a String a Palindrome?
(Solved, 26 Lines)

A string is a palindrome if it is identical forward and backward. For example, “anna”,
“civic”, “level” and “hannah” are all palindromic words. Write a program that reads
a string from the user and uses a loop to determine whether or not it is a palindrome.
Display the result, including a meaningful output message.

Aibohphobia is the extreme or irrational fear of palindromes. This word was
constructed by prepending the -phobia suffix with it’s reverse, resulting in
a palindrome. Ailihphilia is the fondness for or love of palindromes. It was
constructed in the same manner from the -philia suffix.

68 3 Repetition

Exercise 83: Multiple Word Palindromes
(35 Lines)

There are numerous phrases that are palindromes when spacing is ignored. Examples
include “go dog”, “flee to me remote elf” and “some men interpret nine memos”,
among many others. Extend your solution to Exercise 82 so that it ignores spacing
while determining whether or not a string is a palindrome. For an additional challenge,
further extend your solution so that it also ignores punctuation marks and treats
uppercase and lowercase letters as equivalent.

Exercise 84: Multiplication Table
(Solved, 21 Lines)

In this exercise, you will create a program that displays a multiplication table. It
will include the products of all combinations of integers from 1 times 1 up to and
including 10 times 10. Your multiplication table should include a row of labels across
its top consisting of the numbers 1 through 10. It should also include labels down its
left side. The expected output from your program is shown below:

1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 12 14 16 18 20
3 3 6 9 12 15 18 21 24 27 30
4 4 8 12 16 20 24 28 32 36 40
5 5 10 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
7 7 14 21 28 35 42 49 56 63 70
8 8 16 24 32 40 48 56 64 72 80
9 9 18 27 36 45 54 63 72 81 90

10 10 20 30 40 50 60 70 80 90 100

When completing this exercise, you will probably find it helpful to be able to
print out a value without moving down to the next line. This can be accomplished by
including end="" as the last argument to print. For example, print("A") will
display the letterA and then move down to the next line. The statementprint("A",
end="") will display the letter A without moving down to the next line, causing the
next print statement to display its result on the same line as the A.

3.5 Exercises 69

Exercise 85: Rolling Dice
(37 Lines)

Dice are available with different numbers of sides. While 6-sided dice are, perhaps,
the most common, dice with 4, 8, 10, 12, and 20 sides are also readily available. When
a game uses several dice with different numbers of sides, a mechanism is needed to
describe the number and type of dice that should be rolled. One notation that is used
specifies the number of dice, immediately followed by a lowercase d, immediately
followed by the number of sides on the dice. For example, 3d8 indicates that three
8-sided dice should be rolled and their total should be computed, while 5d6 indicates
that five 6-sided dice should be rolled and totaled. When only one die needs to be
rolled, the number of dice can be omitted. As a result, both d20 and 1d20 indicate
that a single 20-sided die should be rolled.

Create a program that reads rolls from the user expressed using the notation
described previously. Once the roll has been read, your program should use Python’s
random number generator to simulate the roll. Print a message that shows the number
rolled on each die, followed by the total for all of the dice that were rolled. Allow
the user to continue entering rolls until a blank line is entered. You may assume that
the user will always enter a valid roll. Ensure that your program behaves correctly
when the user does not include the number of dice to the left of the d.

Exercise 86: The Collatz Conjecture
(22 Lines)

Consider a sequence of integers that is constructed in the following manner:

Start with any positive integer as the only term in the sequence
While the last term in the sequence is not equal to 1 do

If the last term is even then
Add another term to the sequence by dividing the last term by 2 (using
floor division so the result is an integer)

Else
Add another term to the sequence by multiplying the last term by 3 and
adding 1

The Collatz conjecture states that this sequence will eventually end with one when
it begins with any positive integer. Although this conjecture has never been proved,
it appears to be true.

Create a program that reads an integer, . n, from the user and reports all of the
values in the sequence, starting with . n and ending with one. Your program should
allow the user to continue entering new. n values (and your program should continue
displaying the sequences) until the user enters a value for . n that is less than or equal
to zero.

70 3 Repetition

The Collatz conjecture is an example of an open problem in mathematics.
While many people have tried to prove that it is true, no one has been able to
do so. Information on other open problems in mathematics can be found on
the Internet.

Exercise 87: Greatest Common Divisor
(Solved, 17 Lines)

The greatest common divisor of two positive integers,. n and. m, is the largest integer,
. d, which divides evenly into both . n and . m. There are several algorithms that can be
used to solve this problem, including:

Initialize d to the smaller of m and n.
While d does not evenly divide m or d does not evenly divide n do

Decrease the value of d by 1
Report d as the greatest common divisor of n and m

Write a program that reads two positive integers from the user and uses this algorithm
to compute and report their greatest common divisor.

Exercise 88: Prime Factors
(27 Lines)

The prime factorization of an integer,. n, can be determined using the following steps:

Initialize factor to 2
While factor is less than or equal to n do

If n is evenly divisible by factor then
Conclude that factor is a factor of n
Divide n by factor using floor division

Else
Increase factor by 1

Write a program that reads an integer from the user. If the value entered by the
user is less than 2, then your program should display an appropriate error message.
Otherwise, your program should display the prime numbers that can be multiplied
together to compute . n, with one factor appearing on each line. For example:

3.5 Exercises 71

Enter an integer (2 or greater): 72
The prime factors of 72 are:
2
2
2
3
3

Exercise 89: Binary to Decimal
(18 Lines)

Write a program that converts a binary (base 2) number to decimal (base 10). Your
program should begin by reading the binary number from the user as a string. Then
it should compute the equivalent decimal number by processing each digit in the
binary number. Finally, your program should display the equivalent decimal number
with an appropriate message.

Exercise 90: Decimal to Binary
(Solved, 27 Lines)

Write a program that converts a decimal (base 10) number to binary (base 2). Read the
decimal number from the user as an integer and then use the division algorithm shown
below to perform the conversion. When the algorithm completes, result contains the
binary representation of the number. Display the result, along with an appropriate
message.

Let result be an empty string
Let q represent the number to convert
Repeat

Set r equal to the remainder when q is divided by 2
Convert r to a string and add it to the beginning of result
Divide q by 2, discarding any remainder, and store the result back into q

Until q is 0

Exercise 91: Armstrong Numbers
(30 Lines)

A non-negative integer is an Armstrong number if the sum of all its digits, each raised
to the number of digits in the number, is equal to the number itself. For example,
371 is an Armstrong number because .33 + 73 + 13 = 371. Similarly, 92,727 is an

72 3 Repetition

Armstrong number because.95+25+75+25+75 = 92, 727. The integers 0 through
9 are also Armstrong numbers.

Create a program that reads an integer from the user and reports whether or not it
is an Armstrong number. Your program should display an appropriate error message
if the integer entered by the user is negative.

It has been proved that there are only 88 Armstrong numbers, the largest of
which is 115,132,219,018,763,992,565,095,597,973,971,522,401. Ensure that
your program correctly reports that it is an Armstrong number.

Exercise 92: Maximum Integer
(Solved, 39 Lines)

This exercise examines the process of identifying the maximum value in a collection
of integers. Each of the integers will be randomly selected from the numbers between
1 and 100. The collection of integers may contain duplicate values, and some of the
integers between 1 and 100 may not be present.

Take a moment and think about how you would solve this problem on paper. Many
people would check each integer in sequence and ask themselves if the number that
they are currently considering is larger than the largest number that they have seen
previously. If it is, then they forget the previous maximum number and remember
the current number as the new maximum number. This is a reasonable approach
and will result in the correct answer when the process is performed carefully. If you
were performing this task, how many times would you expect to need to update the
maximum value and remember a new number?

While the question posed at the end of the previous paragraph can be answered
using probability theory, this exercise is going to explore it by simulating the sit-
uation. Create a program that begins by selecting a random integer between 1 and
100. Save this integer as the maximum number encountered so far. After the initial
integer has been selected, generate 99 additional random integers between 1 and
100. Check each integer as it is generated to see if it is larger than the maximum
number encountered so far. If it is, then your program should update the maximum,
and record that update was performed. Display each integer after you generate it.
Include a notation with the integers that are a new maximum value.

After it has displayed 100 integers, your program should display the maximum
value encountered, along with the number of times the maximum value was updated.
Partial output for the program is shown below, with … representing the remaining
integers that your program will display. Run your program several times. Is the num-
ber of updates performed on the maximum value what you expected?

3.5 Exercises 73

30
74 <== Update
58
17
40
37
13
34
46
52
80 <== Update
37
97 <== Update
45
55
73
...

The maximum value found was 100.
The maximum value was updated 5 times.

Exercise 93: Coin Flip Simulation
(47 Lines)

What’s the minimum number of times you have to flip a coin before you can have
three consecutive flips that result in the same outcome (either all three are heads, or
all three are tails)? What’s the maximum number of flips that might be needed? How
many flips are needed on average? In this exercise, these questions will be explored
by creating a program that simulates several series of coin flips.

Create a program that uses Python’s random number generator to simulate flipping
a coin several times. The simulated coin should be fair, meaning that the probabil-
ity of heads is equal to the probability of tails. Your program should flip simulated
coins until either 3 consecutive heads or 3 consecutive tails occur. Display an H each
time the outcome is heads, and a T each time the outcome is tails, with all of the
outcomes for one simulation on the same line. Then display the number of flips that
were needed to reach 3 consecutive occurrences of the same outcome. When your
program is run, it should perform the simulation 10 times and report the average
number of flips needed. Sample output is shown below:

H T T T (4 flips)
H H T T H T H T T H H T H T T H T T T (19 flips)
T T T (3 flips)
T H H H (4 flips)

74 3 Repetition

H H H (3 flips)
T H T T H T H H T T H H T H T H H H (18 flips)
H T T H H H (6 flips)
T H T T T (5 flips)
T T H T T H T H T H H H (12 flips)
T H T T T (5 flips)
On average, 7.9 flips were needed.

Exercise 94: Monty Hall Problem
(Solved, 35 Lines)

The Monty Hall problem provides a contestant with the opportunity to choose one of
three doors (numbered 1, 2, and 3). There is a car behind one of the doors, which is
the prize the contestant is trying to win. The other doors have something undesirable
behind them, often represented by a goat. After the contestant chooses their door,
the game’s host opens one of the two doors that was not selected, always revealing
an undesirable item. The contestant is then given the opportunity to either keep the
door that they initially selected, or switch their selection to the other closed door.
After the contestant makes their choice, their selected door is opened and their prize is
revealed. Whether or not switching doors impacts the contestant’s chance of winning
the car was debated when this problem was initially posed, with some arguing that
choosing to switch doors benefited the contestant, while others argued that switching
doors had no impact.

Computer simulation is one technique that can be used to help identify the best
course of action for the contestant. Create a program that simulates at least 100,000
instances of the Monty Hall problem. In each simulation, your program should begin
by randomly selecting the door hiding the car. Then your program should randomly
select one of the doors as the player’s choice. Once these values have been selected,
the program should select one door for the host to open. This door cannot be the
door that the player selected, and it cannot be the door hiding the car. If there are
two doors that meet these criteria, then your program should randomly select one of
them. Finally, your simulation should determine whether or not it would have been
beneficial for the player to switch their selection, and update a counter accordingly.
Once all of the games have been simulated, your program should display a message
showing what percentage of the time switching was beneficial. Did your simula-
tion show that switching doors was beneficial? Did the outcome of your simulation
surprise you?

4Functions

As programs grow, steps need to be taken to make them easier to develop and debug.
One approach that can be used is breaking the program’s code into sections called
functions.

Functions serve several important purposes: They allow code to be written once
and then called from many locations, they allow programmers to test different parts
of the solution individually, and they make it possible to hide (or at least set aside) the
details once part of the program has been completed. These purposes are achieved
by allowing the programmer to name and set aside a collection of Python statements
for later use. Then the programmer can cause those statements to execute whenever
they are needed. The statements are named by defining a function. They are executed
by calling a function. When the statements in a function finish executing, control
returns to the location where the function was called, and the program continues to
execute from that location.

The programs that you have written previously called functions like print,
input, int, and float. These functions were defined by Python’s creators, and
they can be called in any Python program. In this chapter, you will learn how to
define and call your own functions.

A function definition begins with a line that consists of def, followed by the
name of the function that is being defined, followed by an open parenthesis, a close
parenthesis, and a colon. This line is followed by the body of the function, which is
the collection of statements that will execute when the function is called. Like the
bodies of if statements and loops, the bodies of functions are indented. A function’s
body ends before the next line that is indented the same amount as (or less than) the

© Springer Nature Switzerland AG 2025
B. Stephenson, The Python Workbook, Texts in Computer Science,
https://doi.org/10.1007/978-3-031-84560-4_4

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_4&domain=pdf
https://doi.org/10.1007/978-3-031-84560-4_4
https://doi.org/10.1007/978-3-031-84560-4_4
https://doi.org/10.1007/978-3-031-84560-4_4
https://doi.org/10.1007/978-3-031-84560-4_4
https://doi.org/10.1007/978-3-031-84560-4_4
https://doi.org/10.1007/978-3-031-84560-4_4
https://doi.org/10.1007/978-3-031-84560-4_4
https://doi.org/10.1007/978-3-031-84560-4_4
https://doi.org/10.1007/978-3-031-84560-4_4
https://doi.org/10.1007/978-3-031-84560-4_4
https://doi.org/10.1007/978-3-031-84560-4_4

76 4 Functions

line that begins with def. For example, the following lines of code define a function
that draws a box constructed from asterisk characters.

On their own, these lines of code do not produce any output because, although the
drawBox function has been defined, it is never called. Defining the function sets
these statements aside for future use and associates the name drawBox with them.
A Python program that consists of only these lines is a valid program, but it will not
generate any output when it is executed.

The drawBox function is called by using its name, followed by an open paren-
thesis and a close parenthesis. Adding the following line to the end of the previous
program (without indenting it) will call the function and cause the box to be drawn.

Adding a second copy of this line to the program will cause a second box to
be drawn, and adding a third copy of it to the program will cause a third box to
be drawn. More generally, a function can be called as many times as needed when
solving a problem, and those calls can be made from many different locations within
the program. The statements in the body of the function execute every time the
function is called. When the function returns, execution continues with the statement
immediately after the function call.

4.1 Functions with Parameters

The drawBox function works correctly. It draws the particular box that it was
intended to draw, but it is not flexible, and as a result, it is not as useful as it could be.
In particular, the function would be more flexible and useful if it could draw boxes
of many different sizes.

Many functions take arguments, which are values placed inside the parentheses
when a function is called. The function receives these arguments in the parameter
variables that are included inside the parentheses when the function is defined. The
number of arguments provided when the function is called must match the number
of parameter variables in the function’s definition.

An improved version of thedrawBox function is shown below. The new definition
includes two parameter variables, which are separated by a comma and hold the width
and height of the box, respectively. The values stored in these variables control how
many lines of output are displayed and how many characters are displayed on each
line. The function’s body also includes anif statement that verifies that the argument

4.1 Functions with Parameters 77

values are reasonable. If the arguments are invalid, then the quit function is called
and the program ends immediately.

Two arguments must be supplied when the drawBox function is called because
its definition includes two parameter variables. When the function is called, the value
of the first argument will be placed in the first parameter variable, and similarly, the
value of the second argument will be placed in the second parameter variable. Then
the body of the function will execute. As it executes, the values in the parameter
variables will influence its behavior. For example, the following function call draws
a box with a width of 15 characters and a height of 4 characters because the param-
eter variables width and height control how many characters will be printed.
Additional boxes can be drawn with different sizes by calling the function again
with different arguments.

In its current form, the drawBox function always draws the outline of the box
with asterisk characters, and it always fills the box with spaces. While this may work
well in many circumstances, there could also be times when the programmer needs a
box drawn or filled with different characters. To accommodate this, drawBox will
be updated so that it takes two additional parameters which specify the outline and fill
characters, respectively. The body of the function must also be updated to use these
additional parameter variables, as shown below. A call to the drawBox function,

78 4 Functions

which outlines the box with at symbols and fills the box with periods, is included at
the end of the program.

The programmer must provide the outline and fill characters (in addition to the
width and height) every time this version of drawBox is called. While needing to do
so might be fine in some circumstances, it will be frustrating when asterisk and space
are used much more frequently than other character combinations, because these
arguments will have to be repeated every time the function is called. To overcome
this, default values will be provided for the outline and fill parameters in the function’s
definition. The default value for a parameter is separated from its name by an equal
sign, as shown below.

Once this change is made, drawBox can be called with two, three or four argu-
ments. If drawBox is called with two arguments, the first argument will be placed
in the width parameter variable, and the second argument will be placed in the
height parameter variable. The outline and fill parameter variables will
hold their default values of asterisk and space, respectively. These default values are
used because no arguments were provided for these parameters when the function
was called.

Now consider the following call to drawBox:

4.3 Return Values 79

This function call includes four arguments. The first two arguments are the width and
height, and they are placed into those parameter variables. The third argument is the
outline character. Because it has been provided, the default outline value (asterisk)
is replaced with the provided value, which is an at symbol. Similarly, because the
call includes a fourth argument, the default fill value is replaced with a period. The
output that is displayed by the preceding call to drawBox is shown below.

4.2 Variables in Functions

When a variable is created inside a function, the variable is local to that function.
This means that the variable only exists when the function is executing, and that it can
only be accessed within the body of that function. The variable ceases to exist when
the function returns, and as such, it cannot be accessed after that time. The drawBox
function uses several variables to perform its task. These include parameter variables,
such as width and fill, that are created when the function is called, as well as
the for loop control variable, i, that is created when the loop begins to execute. All
of these are local variables that can only be accessed within this function. Variables
created with assignment statements in the body of a function are also local variables.

4.3 Return Values

The drawBox function prints characters on the screen. While it takes arguments
that specify how the box will be drawn, the function does not compute a result that
needs to be stored in a variable and used later in the program. But many functions
do compute such a value. For example, the sqrt function in the math module
computes the square root of its argument and returns this value so that it can be used
in subsequent calculations. Similarly, the input function reads a value typed by
the user and then returns it so that it can be used later in the program. Some of the
functions that you write will also need to return values.

A function returns a value using the return keyword, followed by the value that
will be returned. When the return keyword executes, the function ends immedi-
ately, and control returns to the location where the function was called. For example,

80 4 Functions

the following statement immediately ends the function’s execution and returns 5 to
the location from which it was called.

Functions that return values are often called on the right side of an assignment
statement, but they can also be called in other contexts where a value is needed. Exam-
ples of such include an if statement or while loop condition, or as an argument to
another function, such as print or range.

A function that does not return a result does not need to use the return keyword,
because the function will automatically return after the last statement in the function’s
body executes. However, a programmer can use the return keyword, without a
trailing value, to force the function to return at an earlier point in its body. Any
function, whether it returns a value or not, can include multiple return statements.
Such a function will return as soon as any of the return statements execute.

Consider the following example. A geometric sequence is a sequence of terms that
begins with some value, . a, followed by an infinite number of additional terms. Each
term in the sequence, beyond the first, is computed by multiplying its immediate
predecessor by . r , which is referred to as the common ratio. As a result, the terms
in the sequence are . a, .ar , .ar2, .ar3, …. When . r is 1, the sum of the first . n terms of
a geometric sequence is .a × n. When . r is not 1, the sum of the first . n terms of a
geometric sequence can be computed using the following formula.

. sum = a(1− rn)

1− r

A function can be written that computes the sum of the first . n terms of any
geometric sequence. It will require 3 parameters: a, r, and n, and it will need to
return one result, which is the sum of the first n terms. The code for the function is
shown below.

The function begins by using an if statement to determine whether or not r is
one. If it is, the sum is computed as a * n, and the function immediately returns
this value without executing the remaining lines in the function’s body. When r is

4.4 Importing Functions into Other Programs 81

not equal to one, the body of the if statement is skipped, and the sum of the first
n terms is computed and stored in s. Then the value stored in s is returned to the
location from which the function was called.

The following program demonstrates the sumGeometric function by comput-
ing sums until the user enters zero for a. Each sum is computed inside the function,
and then returned to the location where the function was called. Then the returned
value is stored in total using an assignment statement. A subsequent statement dis-
plays total before the program goes on and reads the values for another sequence
from the user.

The preceding program included a function named main which read values from
the user, computed the desired results, and displayed them. Then the final line in
the program called the main function. Neither this structure, nor the name main,
is required by Python, but both are widely used by Python programmers. Following
these conventions will make it easier for other people to read and modify your
programs, and also allows functions to be imported into other programs, as described
below.

4.4 Importing Functions into Other Programs

One of the benefits of using functions is the ability to write a function once, and
then call it many times from different locations. This is easily accomplished when
the function definition and call locations all reside in the same file. The function is
defined, and then it is called by using its name followed by parentheses containing
any arguments.

82 4 Functions

At some point, you will find yourself in a situation where you want to call a func-
tion that you wrote for a previous program while solving a new problem. New pro-
grammers (and even some experienced programmers) are often tempted to copy the
function from the old program into the new one, but this is an undesirable approach.
Copying the function results in the same code residing in two places. As a result,
when a bug is identified, it will need to be corrected twice. A better approach is to
import the function from the old program into the new one, similar to the way that
functions are imported from Python’s built-in modules.

Functions from an old program can be imported into a new one using the import
keyword, followed by the name of the Python file (without the .py extension) that
contains the functions of interest. This allows the new program to call the functions
in the old file, but it also causes the program in the old file to execute. While this may
be desirable in some situations, it is common to want access to the old program’s
functions without actually running the program. This is normally accomplished by
creating a function named main that contains the statements needed to solve the
problem. Then one line of code at the end of the file calls the main function. Finally,
an if statement is added to ensure that the main function does not execute when
the file has been imported into another program, as shown below:

This structure should be used whenever you create a program that includes functions
that you might want to import into another program in the future.

4.5 Debugging

Dividing larger programs into functions makes them easier to develop, because the
programmer can focus on only one part of the problem at a time. It also makes them
easier to debug for the same reason. But functions also provide new opportunities for
you to introduce errors into your programs. The following sections examine some
of the errors that can arise when a program is separated into functions, and how to
resolve them.

4.5.1 Syntax Errors

Some of the syntax errors that are common with functions are similar to those that you
encountered when writing if statements and loops, such as omitting the colon, or
failing to indent the body correctly. The error messages generated by Python in these
cases include the location of the error. This generally makes these errors reasonably
straightforward to resolve.

4.5 Debugging 83

Omitting the parentheses when defining a function that does not include any
parameters is also a syntax error, as is failing to separate any parameter variables in
the function’s definition with commas. The error messages displayed in these cases
don’t explicitly tell the programmer that the parentheses or commas are missing, but
they do identify the locations where they are needed. An example of such an error is
shown below. The ^ character identifies the location where the missing parentheses
need to be inserted.

It is also worth highlighting that function definitions begin with def rather than
func or function. Attempting to begin a function definition with an incorrect
or mistyped keyword is another syntax error that can occur when creating your own
functions.

4.5.2 Runtime Errors

A function may terminate with a runtime error because there is an error in the
statements that make up the body of the function. Runtime errors can also occur
because the function was called with incorrect arguments and these incorrect values
are causing a function that was written correctly to crash. Determining which of these
situations has occurred is important so that the search for the error can be focused in
the correct area.

Adding print statements to the beginning of a function that display the values of
the function’s parameter variables can help a programmer determine whether or not
the values passed to the function are correct. Python’s assert keyword can also
be used to accomplish this goal. The assert keyword is immediately followed
by a condition that is expected to evaluate to True. When this occurs, execution
continues with the next statement. If the condition evaluates to False, then the
program terminates with a runtime error. Using assertions instead of print statements
is valuable because a message is only displayed when there is a problem. This saves
the programmer from having to compare the displayed values to the expected values.
It also ensures that the programmer is aware of an error when one occurs because
the program terminates with a runtime error.

Assertions at the beginning of functions can be used to ensure that the parameter
variables’ values are within desired ranges. They can also be used to verify that
the provided values have the correct types using Python’s type function and is
keyword. For example, the function below includes parameters for a person’s name
and age. The assertions at the beginning of the function ensure that the person’s age is

84 4 Functions

an integer or floating-point number greater than or equal to zero. These are followed
by additional assertions that ensure that the person’s name is a non-empty string.

Including assertions at the beginning of a function ensures that the program crashes
as soon as the function begins executing if the function’s arguments are invalid. This
indicates that the problem exists in the code preceding the function call, rather than in
the body of the function, and allows the programmer to focus on that area. The error
message displayed when the displayPerson function is called with a negative
age is shown below. The assertion that failed (age >= 0) is near the bottom of the
error message.

Other examples of runtime errors that can occur include attempting to call a
function with the wrong number of arguments, misspelling the name of a function
when it is called, or attempting to access a variable that is local to a function outside
of it. In each of these cases, Python will display an error message that identifies the
location of the error, allowing the programmer to correct the error relatively easily.

Failing to include a return statement in a function that is supposed to return
a value often results in a type error because None, which Python uses to represent
the absence of any value, was returned by the function instead of the expected value.
Unfortunately, the line number provided in the error message indicates where the
calculation involving None occurred, rather than the location where the return
statement is needed, so knowing that a missing return statement is a common cause
of this error will help you correct it more quickly.

4.5.3 Logic Errors

Many of the functions that you create will include parameters. When these functions
are called, the arguments must be provided in the same order as the parameter vari-
ables. Failing to do so will result in either a logic error or a runtime error, depending
on the nature of the function. Judicious use of assertions can detect out-of-order
arguments in some cases, but there is no way for Python to detect this error when

4.6 Exercises 85

a function takes two (or more) parameters of the same type with the same range of
permissible values. The risk of this error can be minimized by providing meaningful
names to parameter variables, including good quality comments ahead of function
definitions, and ordering the parameters in a consistent manner when you create
multiple functions that take the same (or similar) parameters. Printing the values of
the parameter variables at the beginning of the function’s body can also help reveal
this kind of error.

Python functions are normally given unique names. However, it is possible to
define two functions with the same name. When this occurs, the second definition
replaces the first, and all subsequent calls to the function will use the new behavior.
This can be a useful feature when comparing different solutions to a problem, but
can also result in the inadvertent replacement of one function with another. Adding a
print statement to the beginning of a function can help you verify that the expected
function is the one that is executing. Searching for def, followed by the name of the
function, in your Python file can also help reveal an inadvertent reuse of a function
name.

4.6 Exercises

Functions allow sequences of Python statements to be named and called from multiple
locations within a program. This provides several advantages compared to programs
that do not define any functions, including the ability to write code once and call
it from several locations, and the opportunity to test different parts of the solution
individually. Functions also allow a programmer to set aside some of the program’s
details while concentrating on other aspects of the solution. Using functions effec-
tively will help you write better programs, especially as you tackle larger problems.
Functions should be used when completing all of the exercises in this chapter.

Exercise 95: Compute the Hypotenuse
(23 Lines)

Write a function that takes the lengths of the two shorter sides of a right triangle as
its parameters. Return the hypotenuse of the triangle, computed using Pythagorean
theorem, as the function’s result. Include a main program that reads the lengths of
the shorter sides of a right triangle from the user, uses your function to compute the
length of the hypotenuse, and displays the result. Reusing parts of your solution to
Exercise 10 may help you complete this exercise more quickly.

86 4 Functions

Exercise 96: Taxi Fare
(22 Lines)

In a particular jurisdiction, taxi fares consist of a base fare of $4.00, plus $0.25 for
every 140 meters traveled. Write a function that takes the distance traveled (in kilo-
meters) as its only parameter and returns the total fare as its only result. Write a main
program that demonstrates the function.

Hint: Taxi fares change over time. Use constants to represent the base fare and
the variable portion of the fare so that the program can be updated easily when
the rates increase.

Exercise 97: Scores and Years
(Solved, 28 Lines)

The Gettysburg Address famously opens with the words “Four score and seven
years”. These words represent a duration of 87 years because each score represents
20 years, for a total of.4× 20+ 7 = 87. Use this information to write a function that
computes the total number of years represented by a number of scores and a number
of years. Your function will take two parameters and return the total as its only result.
Write a main program that reads input values from the user, provides them to your
function, and prints the result.

Exercise 98: Shipping Calculator
(23 Lines)

An online retailer provides express shipping for many of its items at a rate of $10.95
for the first item in an order, and $2.95 for each subsequent item in the same order.
Write a function that takes the number of items in the order as its only parameter.
Return the shipping charge for the order as the function’s result. Include a main
program that reads the number of items purchased from the user and displays the
shipping charge.

Exercise 99: Median of Three Values
(Solved, 41 Lines)

Write a function that takes three numbers as parameters, and returns the median value
of those parameters as its result. Include a main program that reads three values from
the user and displays their median.

4.6 Exercises 87

Hint: The median value is the middle of the three values when they are sorted
into ascending order. It can be found using if statements, or with a little bit of
mathematical creativity.

Exercise 100: Storage Units
(51 Lines)

Computer files can range in size from a few bytes to trillions of bytes, or more.
When the size of a large file is displayed, it may be desirable to use a unit other than
bytes to reduce the number of digits that are needed. Simultaneously, units that are
appropriate for a large file do not work well for a small file because many digits will
be needed to the right of the decimal point to prevent the size from being represented
as zero. These challenges can be addressed by using different units for files with
different sizes.

The standard metric prefixes kilo, mega, giga, and tera are used ahead of byte to
represent one thousand, one million, one billion, and one trillion bytes, respectively.
Confusingly, these prefixes have also been used, at times, to represent .210, .220, .230,
and .240 bytes. In recent years, this confusion has been lessened by using prefixes
kibi, mebi, gibi, and tebi (abbreviated Ki, Mi, Gi, and Ti) to represent the powers
of 2.

Write a function that takes an integer number of bytes as its only parameter. The
function will return a string which represents that number of bytes using a power-
of-two unit that is appropriate for the magnitude of the value. More specifically, the
returned string will represent the number of bytes using the largest power-of-two
unit that is less than or equal to the provided value. The size should be formatted so
that it has two digits to the right of the decimal point, followed by a space, followed
by the power-of-two unit in its abbreviated form. For example, passing 2,000,000 to
the function should return 1.91 MiB while passing 1024 to it should return 1.00 KiB.

While the largest prefix currently in common use for home computing is tebi,
the pebi and exbi prefixes, which represent .250 and .260, respectively, are used
in some commercial and scientific contexts. Consider including support for
these prefixes in your function.

88 4 Functions

Exercise 101: Convert an Integer to Its Ordinal Number
(47 Lines)

Words like first, second, and third are referred to as ordinal numbers. In this exercise,
you will write a function that takes an integer as its only parameter, and returns a
string containing the appropriate English ordinal number as its only result. Your
function must handle the integers between 1 and 12 (inclusive). Use an assertion so
that your function terminates with a runtime error if the provided value is outside of
this range. Include a main program that demonstrates your function by displaying
each integer from 1 to 12 and its ordinal number. Your main program should only
run when your file has not been imported into another program.

Exercise 102: The Twelve Days of Christmas
(Solved, 52 Lines)

The Twelve Days of Christmas is a repetitive song that describes an increasingly
long list of gifts given to one’s true love on each of 12 days. A single gift is given on
the first day. A new gift is added to the collection on each additional day, and then
the complete collection is given. The first three verses of the song are shown below.
The complete lyrics are available on the Internet.

On the first day of Christmas
my true love gave to me:
A partridge in a pear tree.

On the second day of Christmas
my true love gave to me:
Two turtle doves,
And a partridge in a pear tree.

On the third day of Christmas
my true love gave to me:
Three French hens,
Two turtle doves,
And a partridge in a pear tree.

Write a program that displays the complete lyrics for The Twelve Days of Christmas.
Your program should include a function that displays one verse of the song. It will
take the verse number as its only parameter. Then your program should call this
function 12 times with integers that increase from 1 to 12.

Each item that is given to the recipient in the song should only appear in your
program once, with the possible exception of the partridge. It may appear twice if
that helps you handle the difference between “A partridge in a pear tree” in the first
verse and “And a partridge in a pear tree” in the subsequent verses. Import your
solution to Exercise 101 to help you complete this exercise.

4.6 Exercises 89

Exercise 103: Days in a Month
(47 Lines)

Write a function that determines how many days there are in a particular month. Your
function will take two parameters: The month as an integer between 1 and 12, and
the year as a four-digit integer. Ensure that your function reports the correct number
of days in February for leap years. Include a main program that reads a month and
year from the user and displays the number of days in that month. You may find your
solution to Exercise 63 helpful when solving this problem.

Exercise 104: Gregorian Date to Ordinal Date
(72 Lines)

An ordinal date consists of a year and a day within it, both of which are integers.
The year can be any year in the Gregorian calendar, while the day within the year
ranges from 1, which represents January 1, through to 365 (or 366 if the year is a leap
year) which represents December 31. Ordinal dates are convenient when computing
differences between dates that are a specific number of days (rather than months). For
example, ordinal dates can be used to easily determine whether a customer is within
a 90 day return period, the sell-by date for a food-product based on its production
date, and the due date for a baby.

Write a function named ordinalDate that takes three integers as parameters.
These parameters will be a year, month, and day, respectively. The function should
return the day within the year for that date as its only result. Ensure that your function
considers leap years when performing its calculations. Create a main program that
reads a year, month, and day from the user and displays the day within the year for
that date. Your main program should only run when your file has not been imported
into another program.

Exercise 105: Ordinal Date to Gregorian Date
(103 Lines)

Create a function that takes an ordinal date, consisting of a year and a day within that
year, as its parameters. The function will return the day and month corresponding to
that ordinal date as its results. Ensure that your function handles leap years correctly.

Use your function, as well as the ordinalDate function that you wrote previ-
ously, to create a program that reads a date from the user. Then your program should
report a second date that occurs some number of days later. For example, your pro-
gram could read the date a product was purchased and then report the last date that
it can be returned (based on a return period that is a particular number of days), or
your program could compute the due date for a baby based on a gestation period of
280 days. Ensure that your program correctly handles cases where the entered date
and the computed date occur in different years.

90 4 Functions

Exercise 106: Center a String in the Terminal Window
(Solved, 46 Lines)

Write a function that takes a string, . s, as its first parameter, and the width of the
window in characters, . w, as its second parameter. Your function will return a new
string that includes whatever leading spaces are needed so that . s will be centered in
the window when the new string is printed. The new string can be constructed in the
following manner:

• If the length of. s is greater than or equal to the width of the window, then. s should
be returned.

• If the length of . s is less than the width of the window, then a string containing
(len(s) - w) // 2 spaces followed by . s should be returned.

Write a main program that demonstrates your function by displaying multiple strings
centered in the window.

There are at least two distinct approaches that can be taken to solve this exercise.
One option is to implement the steps outlined previously using an if statement,
string replication and string concatenation. The other option is to achieve the
desired result with an f-string. The f-string approach may require you to do a
little bit of research because it makes use of a feature that is not discussed in
this book.

Exercise 107: Is It a Valid Triangle?
(33 Lines)

If you have 3 straws, possibly of differing lengths, it may or may not be possible to lay
them down so that they form a triangle when their ends are touching. For example, if
all of the straws have a length of 6 inches, then one can easily construct an equilateral
triangle using them. However, if one straw is 6 inches long, while the other two are
each only 2 inches long, then a triangle cannot be formed. More generally, if any one
length is greater than or equal to the sum of the other two, then the lengths cannot
be used to form a triangle.

Write a function that determines whether or not three lengths can form a trian-
gle. The function will take three parameters and return a Boolean result. If any of
the lengths are less than or equal to 0, then your function should return False.
Otherwise, it should determine whether or not the lengths can be used to form a
triangle using the method described in the previous paragraph and return the appro-
priate result. In addition, write a program that reads three lengths from the user and
demonstrates the behavior of your function.

4.6 Exercises 91

Exercise 108: Capitalize It
(Solved, 70 Lines)

Many people do not use capital letters correctly, especially when typing on small
devices like smart phones. To help address this situation, you will create a function
that takes a string as its only parameter and returns a new copy of the string that has
been correctly capitalized. In particular, your function must:

• Capitalize the first non-space character in the string,
• Capitalize the first non-space character after a period, exclamation mark or question
mark, and

• Capitalize a lowercase “i” if it is preceded by a space and followed by a space,
period, exclamation mark, question mark or apostrophe.

Implementing these transformations will correct most capitalization errors. For
example, if the function is provided with the string “what time do i have to be there?
what’s the address? this time i’ll try to be on time!” then it should return the string
“What time do I have to be there? What’s the address? This time I’ll try to be on
time!”. Include a main program that reads a string from the user, capitalizes it using
your function, and displays the result.

Exercise 109: Does a String Represent an Integer?
(Solved, 33 Lines)

In this exercise, you will write a function named isInteger that determines
whether or not the characters in a string represent a valid integer. When determining
if a string represents an integer, you should ignore any leading or trailing white space.
Once this white space is ignored, a string represents an integer if its length is at least
one and it only contains digits, or if its first character is either + or -, and the first
character is followed by one or more characters, all of which are digits.

Write a main program that reads a string from the user and reports whether or
not it represents an integer. Ensure that the main program will not run if the file
containing your solution is imported into another program.

Hint: You may find the lstrip, rstrip, and/or strip methods for strings
helpful when completing this exercise. Documentation for these methods is
available online.

92 4 Functions

Exercise 110: Operator Precedence
(30 Lines)

Write a function, named precedence, that returns an integer representing the
precedence of a mathematical operator. A string containing the operator will be
passed to the function as its only parameter. Your function should return 1 for + and
-, 2 for * and /, and 3 for ^. If the string passed to the function is not one of these
operators, then the function should return -1. Include a main program that reads
an operator from the user and either displays the operator’s precedence or an error
message indicating that the input was not an operator. Your main program should
only run when the file containing your solution has not been imported into another
program.

In this exercise, along with others that appear later in this book, ^ will be used
to represent exponentiation. Using ^ instead of ** will make these exercises
easier because an operator will always be a single character.

Exercise 111: Is a Number Prime?
(Solved, 28 Lines)

A prime number is an integer greater than one that is only divisible by one and itself.
Create a function that determines whether or not its parameter is prime, returning
True if it is, and False otherwise. Write a main program that reads an integer from
the user and displays a message indicating whether or not it is prime. Ensure that
the main program will not run if the file containing your solution is imported into
another program.

Exercise 112: Next Prime
(27 Lines)

In this exercise, you will create a function named nextPrime that finds and returns
the first prime number larger than some integer, n. The value of n will be passed to
the function as its only parameter. Include a main program that reads an integer from
the user and displays the first prime number larger than the entered value. Import
and use your solution to Exercise 111 while completing this exercise.

4.6 Exercises 93

Exercise 113: Random Password
(Solved, 33 Lines)

Write a function that generates a random password. The password should have a
random length of between 7 and 10 characters. Each character should be randomly
selected from positions 33–126 in the ASCII table. Your function will not take any
parameters. It will return the randomly generated password as its only result. Display
the randomly generated password in your file’s main program. Your main program
should only run when your solution has not been imported into another file.

Hint: You will probably find the chr function helpful when completing this
exercise. Detailed information about this function is available online.

Exercise 114: Random License Plate
(45 Lines)

In a particular jurisdiction, older license plates consist of three letters followed by
three digits. When all of the license plates following that pattern had been used, the
format was changed to four digits followed by three letters.

Write a function that generates a random license plate. Your function should have
approximately equal odds of generating a sequence of characters for an old license
plate or a new license plate. Write a main program that calls your function and
displays the randomly generated license plate.

Exercise 115: Check a Password
(Solved, 41 Lines)

In this exercise, you will write a function that determines whether or not a password
meets the requirements imposed by a particular system administrator. That adminis-
trator requires that all passwords are at least eight characters long and contain at least
one uppercase letter, at least one lowercase letter, and at least one digit. Your func-
tion should return True if the password provided to it as its only parameter meets
these requirements. Otherwise, it should return False. Include a main program that
reads a password from the user and reports whether or not it meets the requirements.
Ensure that your main program only runs when your solution has not been imported
into another file.

94 4 Functions

Exercise 116: Random Password with Constraints
(22 Lines)

Using your solutions to Exercises 113 and 115, write a program that generates and
displays a random password that meets the constraints described previously. Count
and display the number of attempts that were needed to generate such a password.
Structure your solution so that it imports the functions you wrote previously, and then
calls them from a function named main in the file that you create for this exercise.

Exercise 117: Hexadecimal and Decimal Digits
(41 Lines)

Write two functions, hex2int and int2hex, that convert between hexadecimal
digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F) and decimal (base 10) integers.
The hex2int function is responsible for converting a string containing a single
hexadecimal digit to a base 10 integer, while the int2hex function is responsible
for converting an integer between 0 and 15 to a single hexadecimal digit. Each
function will take the value to convert as its only parameter, and return the converted
value as its only result. Ensure that the hex2int function works correctly for both
uppercase and lowercase letters. Your functions should use assertions to ensure that
each parameter value is within the expected range.

Exercise 118: Arbitrary Base Conversions
(Solved, 71 Lines)

Write a program that allows the user to convert a number from one base to another.
Your program should support bases between 2 and 16 for both the input and the result.
If the user chooses a base outside of this range, then an appropriate error message
should be displayed, and the program should exit. Divide your program into several
functions, including a function that converts from an arbitrary base to base 10, a
function that converts from base 10 to an arbitrary base, and a main program that
reads the bases and input number from the user. You may find your solutions to
Exercises 89, 90 and 117 helpful when completing this exercise.

Exercise 119: Reduce a Fraction to Lowest Terms
(Solved, 47 Lines)

Write a function that takes two positive integers, representing the numerator and
denominator of a fraction, as its only parameters. The body of the function should
reduce the fraction to lowest terms, and then return both the numerator and denom-
inator of the reduced fraction as its result. For example, if the parameters passed
to the function are 6 and 63, then the function should return 2 and 21. Include a

4.6 Exercises 95

main program that allows the user to enter a numerator and denominator. Then your
program should display the reduced fraction.

Hint: In Exercise 87, you wrote a program that computed the greatest common
divisor of two positive integers. You may find that code useful when completing
this exercise.

Exercise 120: Reduce Measures
(Solved, 110 Lines)

Many recipe books use cups, tablespoons and teaspoons to describe the volumes of
ingredients used when cooking or baking. While such recipes are easy enough to
follow if you have the appropriate measuring cups and spoons, they can be difficult
to double, triple or quadruple when cooking dinner for the entire extended family.
For example, a recipe that calls for 4 tablespoons of an ingredient requires 16 table-
spoons when quadrupled. However, 16 tablespoons would be better expressed (and
easier to measure) as 1 cup.

Write a function that expresses a volume using the largest units possible. The
function will take the number of units as its first parameter, and the unit of measure
(cup, tablespoon or teaspoon) as its second parameter. It will return a string repre-
senting the measure using the largest possible units as its only result. For example,
if the function is provided with parameters representing 59 teaspoons, then it should
return the string “1 cup, 3 tablespoons, 2 teaspoons”.

Hint: One cup is equivalent to 16 tablespoons. One tablespoon is equivalent to
3 teaspoons.

Exercise 121: Magic Dates
(Solved, 26 Lines)

A magic date is a date where the day multiplied by the month is equal to the two-
digit year. For example, June 10, 1960, is a magic date because June is the sixth
month, and 6 times 10 is 60, which is equal to the two-digit year. Write a function
that determines whether or not a date is a magic date. Use your function to create a
main program that finds and displays all of the magic dates in the twentieth century.
You will probably find your solution to Exercise 103 helpful when completing this
exercise.

96 4 Functions

Exercise 122: Formatting a Page Range
(65 Lines)

Sometimes authors refer to pages elsewhere in their own work, or to pages within
another work. When only one page is referenced, the author simply uses the number
for that page, but things become more complicated when a range of pages is refer-
enced. Should the author use all of the digits in the higher page number, only the
digits that have changed in the higher page number, or something between these two
extremes? A particular style manual advises authors to format page ranges in the
following manner:

• All digits are included for the lower page number.
• If the lower page number is less than 100, then all digits in the higher page number
are used.

• If the lower page number is divisible by 100, then all digits in the higher page
number are used.

• If the higher page number has more digits than the lower page number, then all
digits in the higher page number are used.

• In all other cases, only the changed digits are included in the higher page number,
unless the second-to-last digit in the lower number is not 0, in which case two
digits are included in the higher page number even if only one digit has changed.

Write a function that formats a page range in the manner outlined previously. The
function will take two parameters, which will be the lower and higher page numbers,
respectively. It will return a string consisting of the lower page number, followed by
a dash, followed by the appropriate digits from the higher page number. Include a
main program that tests your function for several page ranges. Some cases that you
should consider are shown in the Table 4.1.

Table 4.1 Formatted page ranges

Lower number Higher number Formatted range

5 12 5–12

92 94 92–94

202 204 202–4

212 214 212–14

242 357 242–357

300 301 300–301

302 402 302–402

1101 1102 1101–2

1111 1112 1111–12

1111 1211 1111–211

5Lists

All of the variables used in previous chapters held one value. That value could be
an integer, a Boolean, a string, or a value of some other type. While using one
variable for each value is practical for small problems, it quickly becomes untenable
when working with larger amounts of data. Lists overcome this problem by allowing
several, even many, values to be stored in one variable.

A variable that holds a list is created with an assignment statement, much like
the variables that were created previously. Lists are enclosed in square brackets, and
commas are used to separate adjacent values within the list. For example, the fol-
lowing assignment statement creates a list that contains four floating-point numbers
and stores it in a variable named data. Then the values are displayed by calling the
print function. All four values are displayed when the print function executes
because data is the entire list of values.

A list can hold zero or more values. The empty list, which has no values in it,
is denoted by [] (an open square bracket immediately followed by a close square
bracket). Much like an integer can be initialized to 0 and then have value added to
it at a later point in the program, a list can be initialized to the empty list and then
have items added to it as the program executes.

© Springer Nature Switzerland AG 2025
B. Stephenson, The Python Workbook, Texts in Computer Science,
https://doi.org/10.1007/978-3-031-84560-4_5

97

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_5&domain=pdf
https://doi.org/10.1007/978-3-031-84560-4_5
https://doi.org/10.1007/978-3-031-84560-4_5
https://doi.org/10.1007/978-3-031-84560-4_5
https://doi.org/10.1007/978-3-031-84560-4_5
https://doi.org/10.1007/978-3-031-84560-4_5
https://doi.org/10.1007/978-3-031-84560-4_5
https://doi.org/10.1007/978-3-031-84560-4_5
https://doi.org/10.1007/978-3-031-84560-4_5
https://doi.org/10.1007/978-3-031-84560-4_5
https://doi.org/10.1007/978-3-031-84560-4_5
https://doi.org/10.1007/978-3-031-84560-4_5

98 5 Lists

5.1 Accessing Individual Elements

Each value in a list is referred to as an element. The elements in a list are numbered
sequentially with integers, starting from 0. Each integer identifies a specific element
in the list, and is referred to as the index for that element. In the previous code
segment, the element at index 0 in data is 2.71, while the element at index 3 is 1.62.

An individual list element is accessed by using the list’s name, immediately fol-
lowed by the element’s index enclosed in square brackets. For example, the follow-
ing statements use this notation to display 3.14. Notice that printing the element at
index 1 displays the second element in the list because the first element in the list has
index 0.

An individual list element can be updated using an assignment statement. The
name of the list, followed by the element’s index enclosed in square brackets, appears
to the left of the assignment operator. The new value that will be stored at that index
appears to the assignment operator’s right. When the assignment statement executes,
the element previously stored at the indicated index is overwritten with the new value.
The other elements in the list are not impacted by this change.

Consider the following example. It creates a list that contains four elements, and
then it replaces the element at index 2 with 2.30. When the print statement executes,
it will display all of the values in the list. Those values are 2.71, 3.14, 2.30, and 1.62.

5.2 Loops and Lists

A for loop executes once for each item in a collection. The collection can be a
range of integers constructed by calling the range function. It can also be a list.
The following example uses a for loop to total the values in data.

This program begins by initializing data and total to the values shown. Then
the for loop begins to execute. The first value in data is copied into value, and
then the body of the loop runs. It adds value to the total.

5.2 Loops and Lists 99

Once the body of the loop has executed for the first time, control returns to the top
of the loop. Then the second element in data is copied into value, and the loop
body executes again, which adds this new value to the total. This process continues
until the loop has executed once for each element in the list, and the total of all
of the elements has been computed. Then the result is displayed and the program
terminates.

Sometimes loops are constructed which iterate over a list’s indices instead of
its values. To construct such a loop, one needs to be able to determine how many
elements are in a list. This can be accomplished using the len function. 1 It takes
one argument, which is a list, and it returns the number of elements in the list. 2

The len function can be used with the range function to construct a collection
of integers that includes all of the indices for a list. When the range function is
called with one argument, it returns a collection of sequential integers, starting from
0, and counting up toward the value provided as an argument. As a result, a collection
of integers containing only the valid indices for the list can be constructed by calling
range with the length of the list as its only argument.

A subset of the indices can be constructed by providing a second argument to
range. When two arguments are provided, the range function returns sequential
integers, starting with the first value, counting up toward (but not reaching) the
second value. The following program demonstrates this by using a for loop to
iterate through all of data’s indices, except the first, to identify the position of the
largest element in data.

This program begins by initializing data and largest_pos. Then the collec-
tion of values that will be used by the for loop is constructed using the range
function. It’s first argument is 1, and its second argument is the length of data,
which is 4. As a result, range returns a collection of sequential integers from 1 up
to and including 3, which is also the indices for all of the elements in data, except
the first.

The for loop begins its execution by storing 1 into i. Then the loop body runs
for the first time. It compares the value in data at index i, which is 1.41, to the

1 The len function can also be used to determine how many characters are in a string, as previously
described in Sect. 1.5.
2 The len function returns 0 if the list passed to it is empty.

100 5 Lists

value in data at index largest_pos, which is 1.62. Since the element at index
i is smaller, the if statement’s condition evaluates to False, and the body of the
if statement is skipped.

Now control returns to the top of the loop. The next value in the range, which is
2, is stored into i, and the body of the loop executes for a second time. The value at
index i, which is 3.14, is compared with the value at index largest_pos, which
is 1.62. Since the value at index i is larger, the body of the if statement executes,
and largest_pos is set equal to i, which is 2.

The loop runs one more time with i equal to 3. The element at index i, which is
2.71, is less than the element at index largest_pos, which is 3.14, so the body
of the if statement is skipped. Then the loop terminates, and the program reports that
the largest value is 3.14, which is at index 2.

Programmers can also use while loops when working with lists. For example,
the following code segment uses a while loop to identify the index of the first
positive value in a list. The loop uses a variable, i, which holds the index of each
element in the list in sequence, starting from 0. The value in i increases as the loop
runs until either the end of the list is reached or a positive element is found.

When this program executes, it begins by initializing data and i. Then the
while loop’s condition is evaluated. The value of i, which is 0, is less than the
length of data, and the element at position i is 0, which is less than or equal to 0.
As a result, the condition evaluates to True, the body of the loop executes, and the
value of i increases from 0 to 1.

Control returns to the top of the while loop, and its condition is evaluated again.
The value stored in i is still less than the length of data, and the value at position i
in the list is still less than or equal to 0. As a result, the loop’s condition still evaluates
to True. This causes the body of the loop to execute again, which increases the value
of i from 1 to 2.

When i is 2, the loop’s condition evaluates to False because the element at
position i is greater than 0. The loop’s body is skipped, and execution continues
with the if statement. Its condition evaluates to True because i is 2, which is less
than the length of data. As a result, the body of the if part executes, and the index
of the first positive number in data, which is 2, is displayed.

5.3 Additional List Operations 101

5.3 Additional List Operations

Lists can grow and shrink as a program runs. A new element can be inserted at any
location in a list, and an element can be deleted based on its value or its index. Python
also provides mechanisms for determining whether or not an element is present in a
list, finding the index of the first occurrence of an element in a list, rearranging the
elements in a list, and many other useful tasks.

Tasks like inserting or removing an element are performed by applying a method
to a list. Much like a function, a method is a collection of statements that can be
called upon to perform a task. However, the syntax used to apply a method to a list
is slightly different from the syntax used to call a function.

A method is applied to a list by using the name of a variable containing a list, 3

followed by a period, followed by the method’s name. Like a function call, the name
of the method is followed by parentheses that surround a comma separated collection
of arguments. Some methods return a result. This result can be stored in a variable
using an assignment statement, passed as an argument to another method or function
call, or used as part of a calculation, just like the result returned by a function.

5.3.1 Adding Elements to a List

Elements can be added to the end of an existing list by calling the append method. It
takes one argument, which is the element that will be added to the list. For example,
consider the following program:

The first line creates a new list of 4 elements and stores it in data. Then the
append method is applied to data, which increases its length from 4 to 5 by
adding 2.30 to the end of the list. Finally, the list, which now contains 2.71, 3.14,
1.41, 1.62, and 2.30, is printed.

Elements can be inserted at any location in a list using the insert method. It
requires two arguments: the index at which the element will be inserted, and its value.
When an element is inserted, any elements to the right of the insertion point have
their indices increased by 1, so that there is an index available for the new element.
For example, the following code segment inserts 2.30 in the middle of data, instead
of appending it to the end of the list. When this code segment executes, the values
that are printed are 2.71, 3.14, 2.30, 1.41, and 1.62.

3 Methods can also be applied to a list literal enclosed in square brackets using the same syntax, but
there is rarely a need to do so.

102 5 Lists

5.3.2 Removing Elements from a List

The pop method is used to remove an element at a particular index from a list.
The index of the element to remove is provided as an optional argument to pop. If
the argument is omitted, then pop removes the last element from the list. The pop
method returns the value that was removed from the list as its only result. When
this value is needed for a subsequent calculation, it can be stored into a variable by
calling pop on the right side of an assignment statement. Applying pop to an empty
list is an error, as is attempting to remove an element from an index that is beyond
the end of the list.

A value can also be removed from a list by calling the remove method. It’s only
argument is the value to remove (rather than the index of the value to remove). When
the remove method executes, it removes the first occurrence of its argument from
the list. An error will be reported if the value passed to remove is not present in the
list.

Consider the following example. It creates a list and then removes two elements
from it. When the first print statement executes, it displays [2.71, 3.14] because
1.62 and 1.41 were removed from the list. The second print statement displays 1.41
because that was the last element in the list when the pop method was applied to it.

5.3.3 Rearranging the Elements in a List

Sometimes a list has all of the correct elements in it, but they aren’t in the order
needed to solve a particular problem. Two elements in a list can be swapped using
a series of assignment statements that read from and write to individual elements in
the list, as shown in the following code segment.

When these statements execute, data is initialized to [2.71, 3.14, 1.41,
1.62]. Then the value at index 1, which is 3.14, is copied into temp. This is
followed by a line which copies the value at index 3 to index 1. Finally, the value in

5.3 Additional List Operations 103

temp is stored into the list at index 3. When the print statement executes, it displays
[2.71, 1.62, 1.41, 3.14].

There are two methods that rearrange the elements in a list. The reverse method
reverses the order of the elements in the list, so that the last element becomes the first
and the first element becomes the last. The sort method sorts the elements in a list
into ascending order. 4 Both reverse and sort can be applied to a list without
providing any arguments.

The following program reads a collection of numbers from the user and stores
them in a list. Then it displays all of the values in sorted order.

5.3.4 Searching a List

Sometimes, one needs to determine whether or not a particular value is in a list. In
other situations, it might be necessary to determine the index of a value that is already
known to be present. Python’s in operator and index method allow these tasks to
be performed.

The in operator determines whether or not a value is present in a list. The value
that is being searched for is placed to the left of the operator. The list that is being
searched is placed to the operator’s right. Such an expression evaluates to True if
the value is present anywhere in the list. Otherwise, it evaluates to False.

The index method is used to identify the position of a particular value within
a list. This value is passed to index as its only argument. The index of the first
occurrence of the value in the list is returned as the method’s result. It is an error to
call the index method with an argument that is not present in the list. As a result,

4 A list can only be sorted if all of its elements can be compared to one another with the less than
operator. The less than operator is defined for many Python types including integers, floating-point
numbers, strings, and lists, among others.

104 5 Lists

programmers sometimes use the in operator to determine whether or not a value is
present in a list, and then use the index method to ascertain its location.

Consider the following example. It begins by reading integers from the user and
storing them in a list. Then one additional integer is read from the user. If it is present
in the list, then the position of its first occurrence is reported. Otherwise, a message
is displayed which reports its absence.

5.4 Lists as Return Values and Arguments

Lists can be returned from functions. Like values of other types, a list is returned
from a function using the return keyword. When the return statement executes,
the function terminates, and the list immediately following the return keyword is
returned to the location where the function was called. Then the list can be stored in
a variable or used in some other way.

Lists can also be passed as arguments to functions. Any lists passed to a function
are included inside the parentheses following the function’s name when it is called.
Each argument, whether it is a list or a value of another type, is assigned to the
corresponding parameter variable inside the function.

Parameter variables that contain lists can be used in the body of a function, just like
parameter variables that contain values of other types. However, unlike an integer,
floating-point number, string or Boolean value, changes made to a list parameter
variable can impact the argument passed to the function, in addition to the value
stored in the parameter variable. In particular, a change made to a list using a method
(such asappend,pop or sort) will change the value of both the parameter variable
and the argument that was provided when the function was called.

Updates performed on individual list elements (where the name of the list, fol-
lowed by an index enclosed in square brackets, appears on the left side of an assign-
ment operator) also modify both the parameter variable and the argument that was

5.5 Debugging 105

provided when the function was called. However, assignments to the entire list (where
only the name of the list appears to the left of the assignment operator) only impact
the parameter variable. Such assignments do not impact the argument provided when
the function was called.

The differences in behavior between list arguments and arguments of other types
may seem arbitrary, as might the decision to have some changes apply to both the
parameter variable and the argument, while others only impact the parameter vari-
able. However, this is not the case. There are important technical reasons for these
differences, but those details will not be discussed here, as they are beyond the scope
of a brief introduction to Python.

5.5 Debugging

All of the errors that were discussed in earlier chapters can occur in programs that
use lists, as can some new errors that didn’t need to be considered previously. The
new errors that you are most likely to encounter are discussed in the sections that
follow.

5.5.1 Syntax Errors

Square brackets are used when a list is initially created, and when individual elements
in the list are accessed or updated. Like the parentheses used in mathematical expres-
sions and function calls, the square brackets used with lists must be balanced. When
a close square bracket is missing, Python will report a syntax error that identifies the
unbalanced open square bracket. Similarly, Python’s error message highlights the
unmatched close square bracket when an open square bracket is omitted, as shown
below:

When a list is created, its initial elements are enclosed in square brackets and
separated by commas. Failing to include the commas between the elements is a syntax
error. The error message reported by Python highlights the location of the missing
comma, and indicates that a comma may be needed, making this a particularly easy
error to identify and correct.

106 5 Lists

5.5.2 Runtime Errors

An IndexError is perhaps the most common error encountered when working
with lists. This runtime error occurs when the program attempts to read or modify a
list element with an index that is greater than or equal to the length of the list. 5

There are two possible causes for this error: either the list contains fewer elements
than it was expected to, or the index was not computed correctly. The error message
reported by Python will identify the line where the IndexError occurred, but
Python is unable to provide any information about the underlying cause of the error.
As a result, a helpful first step when debugging this error is the addition of two print
statements immediately ahead of the line on which the IndexError occurred: one
that displays the value of the index that was accessed, and one that displays the
values in the list (or perhaps just the length of the list if it is expected to have a large
number of elements). Displaying these values will help the programmer determine
whether the problem is with the number of elements in the list, or the index that was
computed. Knowing that will help the programmer continue their search for the error
in the correct location.

Another runtime error that programmers sometimes encounter when working with
lists is a TypeError where the additional information is ‘list’ object is
not callable. This message is reported when one attempts to use parentheses
to access an element in a list instead of square brackets. The error is corrected by
using the proper type of brackets.

5.5.3 Logic Errors

A program that attempts to access an index beyond the end of a list will crash with an
IndexError. However, such an error is not necessarily reported when a program
attempts to access a negative list index. When a negative list index is used, Python
accesses an element in the list starting from its end, rather than its beginning, with –1
representing the last element in the list. Similarly, –2 represents the second-to-last
element, and –3 represents the third-to-last element. A negative list index will only
result in an IndexError if it attempts to access an element beyond the beginning
of the list.

While negative list indices can be a convenient shorthand for accessing elements
near the end of a list, this feature can obscure an incorrect index calculation that
results in a negative value. Displaying the list index that is being accessed or updated
can help identify this kind of error, as can adding assertions (which ensure that the
list indices are greater than or equal to zero) to programs that are not designed to
make use of negative list indices.

5 Recall that the last valid index for a list is the length of the list, minus one, because list indices
begin at zero.

5.6 Exercises 107

Passing a list as an argument to a function was discussed in Sect. 5.4. In that section,
it was noted that some changes made to a parameter variable holding a list modify
both the value of the parameter variable and the function’s argument, while other
changes only update the parameter variable. Failing to understand which changes
impact only the parameter variable, and which changes impact both the parameter
variable and the function’s argument, can cause the program to compute and display
incorrect results. One can determine whether or not the function is inadvertently
modifying the list by displaying the list passed to the function immediately before
and after the function call. Similarly, such print statements will reveal cases where
the programmer expected the function’s argument to change, but it did not.

5.6 Exercises

All of the exercises in this chapter should be solved using lists. The programs that
you write will need to create lists, modify them, and locate values in them. Some of
the exercises will also require you to write functions that return lists, or take them as
arguments.

Exercise 123: Sorted Order
(Solved, 22 Lines)

Write a program that reads integers from the user and stores them in a list. Your
program should continue reading values until the user enters 0. Then it should display
all of the values entered by the user (except for the 0) in ascending order, with one
value appearing on each line. Use either the sort method or the sorted function
to sort the list.

Exercise 124: Reverse Order
(20 Lines)

Write a program that reads integers from the user and stores them in a list. Use 0 as
a sentinel value to mark the end of the input. Once all of the values have been read,
your program should display them (except for the 0) in reverse order, with one value
appearing on each line.

108 5 Lists

Exercise 125: Remove Outliers
(Solved, 46 Lines)

When analysing data collected as part of a science experiment, it may be desirable
to remove the most extreme values before performing other calculations. Write a
function that takes a list of values and a non-negative integer, n, as its parameters.
The function should create a new copy of the list with the n largest elements and the
n smallest elements removed. Then it should return the new copy of the list as the
function’s only result. The order of the elements in the returned list does not have to
match the order of the elements in the original list.

Write a main program that demonstrates your function. It should read a list of
numbers from the user and remove the two largest and two smallest values from it by
calling the function described previously. Display the list with the outliers removed,
followed by the original list. Your program should generate an appropriate error
message if the user enters fewer than 4 values.

Exercise 126: Avoiding Duplicates
(Solved, 21 Lines)

In this exercise, you will create a program that reads words from the user until they
enter a blank line. After the user enters a blank line, your program should display
each word entered by the user exactly once. The words should be displayed in the
same order that they were first entered. For example, if the user enters:

first
second
first
third
second

then your program should display:

first
second
third

Exercise 127: Negatives, Zeros and Positives
(Solved, 29 Lines)

Create a program that reads integers from the user until a blank line is entered. Once
all of the integers have been read, your program should display all of the negative
numbers, followed by all of the zeros, followed by all of the positive numbers. Within
each group, the numbers should be displayed in the same order that they were entered
by the user. For example, if the user enters the values 3, -4, 1, 0, -1, 0, and -2 then

5.6 Exercises 109

your program should output the values -4, -1, -2, 0, 0, 3, and 1. Your program
should display each value on its own line.

Exercise 128: List of Proper Divisors
(36 Lines)

A proper divisor of a positive integer,. n, is a positive integer less than. n which divides
evenly into it. Write a function that computes all of the proper divisors of a positive
integer. The integer will be passed to the function as its only parameter. The function
will return a list containing all of the proper divisors as its only result. Include a
main program that demonstrates the function by reading a value from the user and
displaying its proper divisors. Ensure that your main program only runs when your
solution has not been imported into another file.

Exercise 129: Perfect Numbers
(Solved, 35 Lines)

An integer, . n, is said to be perfect when the sum of its proper divisors is equal to . n.
For example, 28 is a perfect number because its proper divisors are 1, 2, 4, 7 and 14,
and 1 + 2 + 4 + 7 + 14 = 28.

Write a function that determines whether or not a positive integer is perfect. Your
function will take one parameter. If that parameter is a perfect number, then your
function will return True. Otherwise, it will return False. In addition, write a main
program that uses your function to identify and display all of the perfect numbers
between 1 and 10,000. Import your solution to Exercise 128 when completing this
task.

Exercise 130: Only the Words
(38 Lines)

In this exercise, you will create a program that identifies all of the words in
a string entered by the user. Begin by writing a function that takes a string as
its only parameter. Your function should return a list of the words in the string
with the punctuation marks at the edges of the words removed. The punctu-
ation marks that you must consider include commas, periods, question marks,
hyphens, apostrophes, exclamation marks, colons, and semicolons. Do not remove
punctuation marks that appear in the middle of a word, such as the apostrophes
used to form a contraction. For example, if your function is provided with the
string "Contractions include: don’t, isn’t, and wouldn’t."
then your function should return the list ["Contractions", "include",
"don’t", "isn’t", "and", "wouldn’t"].

110 5 Lists

Write a main program that demonstrates your function. It should read a string from
the user and then display all of the words in the string with the punctuation marks
removed. You will need to import your solution to this exercise when completing
Exercises 131 and 188. As a result, you should ensure that your main program only
runs when your file has not been imported into another program.

Exercise 131: Word by Word Palindromes
(34 Lines)

Exercises 82 and 83 previously introduced the notion of a palindrome. Those exer-
cises considered the characters in a string, possibly ignoring spacing and punctuation
marks. While palindromes are most commonly considered character by character,
the notion of a palindrome can be extended to larger units. For example, while the
sentence “Is it crazy how saying sentences backwards creates backwards sentences
saying how crazy it is?” isn’t a character-by-character palindrome, it is a palin-
drome when examined a word at a time (and when capitalization and punctuation
are ignored). Other examples of word-by-word palindromes include “Herb the sage
eats sage, the herb” and “Information school graduate seeks graduate school infor-
mation”.

Create a program that reads a string from the user. Your program should report
whether or not the entered string is a word-by-word palindrome. Ignore capitaliza-
tion, spacing and punctuation when determining the result.

Exercise 132: Below and Above Average
(44 Lines)

Write a program that reads numbers from the user until a blank line is entered. Your
program should display the average of all of the values entered by the user. Then
the program should display all of the below average values, followed by all of the
average values (if any), followed by all of the above average values. An appropriate
label should be displayed before each list of values.

Exercise 133: Formatting a List
(Solved, 46 Lines)

When writing out a list of items in English, one normally separates the items with
commas. In addition, the word “and” is normally included before the last item, unless
the list only contains one item. Consider the following four lists:

apples
apples and oranges

5.6 Exercises 111

apples, oranges and bananas
apples, oranges, bananas and lemons

Write a function that takes a list of strings as its only parameter. Your function
should return a string that contains all of the items in the list, formatted in the man-
ner described previously, as its only result. While the examples shown previously
only include lists with fewer than five elements, your function should behave cor-
rectly for lists of any length. Include a main program that reads several items from
the user, formats them by calling your function, and then displays the result returned
by the function.

The Oxford comma is an additional comma that some writers choose to include
in lists of three or more items. It appears immediately after the second-to-last
item in the list, before “and”. Oxford commas have not been included in the
examples above, but you are welcome to include them in the output of your
function if you prefer that style. If you choose to include an Oxford comma, it
should only be present when three or more items are being formatted. It is not
appropriate to include a comma after the first item when the list contains only
one or two items.

Exercise 134: Random Lottery Numbers
(Solved, 28 Lines)

In order to win the top prize in a particular lottery, one must match all 6 numbers on
their ticket to the 6 numbers between 1 and 49 that are drawn by the lottery organizer.
Write a program that generates a random selection of 6 numbers for a lottery ticket.
Ensure that the selected numbers do not contain any duplicates. Display the numbers
in ascending order.

Exercise 135: Pig Latin
(32 Lines)

Pig Latin is a language constructed by transforming English words. While the origins
of the language are unknown, it is mentioned in at least two documents from the
nineteenth century, which suggests that it has existed for more than 100 years. The
following rules are used to translate English into Pig Latin:

112 5 Lists

• If the word begins with a consonant (including y), then all of the letters at the
beginning of the word, up to the first vowel (excluding y), are moved to the end
of the word, followed by ay. For example, computer becomes omputercay
and think becomes inkthay.

• If the word begins with a vowel (not including y), then way is added to the end
of the word. For example, algorithm becomes algorithmway and office
becomes officeway.

Write a program that reads a line of text from the user. Then your program should
translate the line into Pig Latin and display the result. You may assume that the string
entered by the user only contains lowercase letters and spaces.

Exercise 136: Pig Latin Improved
(51 Lines)

Extend your solution to Exercise 135 so that it correctly handles uppercase letters
and punctuation marks, such as commas, periods, question marks, and exclamation
marks. If an English word begins with an uppercase letter, then its Pig Latin repre-
sentation should also begin with an uppercase letter, and the uppercase letter moved
to the end of the word should be changed to lowercase. For example, Computer
should become Omputercay. If a word ends in a punctuation mark, then the punc-
tuation mark should remain at the end of the word after the transformation has been
performed. For example, Science! should become Iencescay!.

Exercise 137: Balanced Parentheses and Square Brackets
(Solved, 67 Lines)

In writing, mathematics and programming, one normally expects each open paren-
thesis or square bracket to be followed by its corresponding close glyph at a later
point in the text. When parentheses and square brackets are nested, one normally
expects the latest open glyph to be closed before any earlier open glyph is closed.
Failing to close an open glyph, or closing the open glyphs in the wrong order, is an
error, as is including more close glyphs than open glyphs. The algorithm below can
be used to detect unbalanced parentheses and square brackets in a string, s.

5.6 Exercises 113

Initialize glyphs and indices to empty lists
Initialize i to 0 and error to False

While i is less than the length of s and error is False do
If the character at position i in s is an open glyph then

Add the glyph to the end of glyphs
Add its position to the end of indices

If the character at position i in s is a close parenthesis then
If glyphs is empty, or its last element is not an open parenthesis then

Set error to True
Else

Remove the last element from both glyphs and indices
If the character at position i in s is a close square bracket then

If glyphs is empty, or
its last element is not an open square bracket then
Set error to True

Else
Remove the last element from both glyphs and indices

Increment i

When this algorithm completes, .error is set to True if there is a close glyph that
does not have a corresponding open glyph, and the position of the unmatched close
glyph is i - 1. The string includes at least one open glyph that does not have a
corresponding close glyph if the glyphs list is not empty when the algorithm com-
pletes. The index of the open glyph that needs to be closed first is the last value in
indices.

Create a program that reads a string from the user and determines whether or not
all of its open glyphs are correctly closed. If each open glyph has a corresponding
close glyph, and every close glyph has a corresponding open glyph, then your pro-
gram should report that the glyphs are balanced. Otherwise, your program should
report the nature of the first imbalance detected and its location. The location should
be reported by displaying the string on one line, and then printing a ^ character on
the next line under the unbalanced glyph, similar to what Python does in some of its
error messages.

Your program can be extended to handle braces in addition to parentheses and
square brackets. Doing so is left as an optional extension for the interested
reader. Fewer than 10 additional lines of code are needed to complete this task.

114 5 Lists

Exercise 138: Page Numbers in an Index
(54 Lines)

The index at the back of a book lists relevant pages for terms that appear in it. Some
entries might consist of only a single page, while others may include many pages.
When an entry with two or more pages includes consecutive page numbers, each
collection of consecutive numbers can be collapsed into a range consisting of the
first number, followed by a dash, followed by the last number. For example, if the
pages for a particular term include 2, 4, 5, 54, 67, 68, 69, 70 and 101 then the index
would list them as 2, 4-5, 54, 67-70, 101.

Create a function that takes a list of page numbers as its only parameter. It should
return a list of formatted page numbers, where groups of consecutive page numbers
have been collapsed into ranges, as its only result. Use either the sort function or
the sorted method so that your function can handle an unsorted list of page num-
bers. Include a main program that demonstrates that your function works correctly.
Your function may optionally call the function you wrote in Exercise 122 to further
abbreviate any groups of consecutive page numbers, if you prefer that style.

Exercise 139: Line of Best Fit
(43 Lines)

A line of best fit is a straight line that best approximates a collection of. n points. In this
exercise, each point in the collection will have an. x coordinate and a. y coordinate. The
symbols. x̄ and. ȳ represent the average. x and. y values in the collection, respectively.
The line of best fit is represented by the equation .y = mx + b, where .m and . b are
calculated using the following formulas:

. m =
∑

xy − (
∑

x)(
∑

y)

n
∑

x2 − (
∑

x)2

n

. b = ȳ − mx̄

Write a program that reads a collection of points from the user. The user will enter
each point on its own line as an . x coordinate, followed by a comma, followed by a
. y coordinate. Allow the user to continue entering points until a blank line is entered.
Display the formula for the line of best fit in the form .y = mx + b by replacing . m
and . b with the values calculated using the preceding formulas. For example, if the
user inputs the points .(1, 1), .(2, 2.1) and .(3, 2.9) then your program should display
.y = 0.95x + 0.1.

5.6 Exercises 115

Exercise 140: Shuffling a Deck of Cards
(Solved, 49 Lines)

A standard deck of playing cards has 52 unique cards. Each card has one of four
suits, along with a value. The suits are normally spades, hearts, diamonds and clubs,
while the values are 2–10, Jack, Queen, King and Ace.

Each playing card can be represented using two characters. The first character is
the value of the card, with the values 2–9 being represented directly. The characters
“T”, “J”, “Q”, “K” and “A” are used to represent the values 10, Jack, Queen, King
and Ace, respectively. The second character is used to represent the suit of the card.
It is normally a lowercase letter: “s” for spades, “h” for hearts, “d” for diamonds
and “c” for clubs. The following table provides several examples of cards and their
two-character representations.

Card Abbreviation
Jack of spades Js
Two of clubs 2c
Ten of diamonds Td
Ace of hearts Ah
Nine of spades 9s

Begin by writing a function named createDeck. It will use loops to create a
complete deck of cards by storing the two-character abbreviations for all 52 cards
in a list. Return the list of cards as the function’s only result. Your function will not
require any parameters.

Write a second function, named shuffle, that randomizes the order of the cards
in a list. One technique that can be used to shuffle the cards is to visit each element
in the list and swap it with another randomly selected element in the list. You must
write your own loop for shuffling the cards. Do not import the shuffle function
from the random module.

Use both of the functions described in the previous paragraphs to create a main
program that displays a deck of cards before and after it has been shuffled. Ensure
that your main program only runs when your functions have not been imported into
another file.

A good shuffling algorithm is unbiased, meaning that every possible arrange-
ment of the elements is equally probable when the algorithm completes. While
the approach described earlier in this problem suggested visiting each element
in sequence and swapping it with an element at a random index, this algorithm
is biased. In particular, elements that appear near the end of the original list are
more likely to end up at later positions in the shuffled list. Counterintuitively,
an unbiased shuffle can be achieved by visiting each element in sequence and
swapping it to a random index between the position of the current element and
the end of the list, instead of randomly selecting any index.

116 5 Lists

Exercise 141: Dealing Hands of Cards
(44 Lines)

In many card games, each player is dealt a specific number of cards after the deck
has been shuffled. Write a function, deal, which takes the number of hands, the
number of cards per hand, and a deck of cards as its three parameters. Your function
should return a list containing all of the hands that were dealt. Each hand will be
represented as a list of cards.

When dealing the hands, your function should modify the deck of cards passed
to it as a parameter, removing each card from the deck as it is added to a player’s
hand. When cards are dealt, it is customary to give each player a card before any
player receives an additional card. Your function should follow this custom when
constructing the hands for the players.

Use your solution to Exercise 140 to create a main program that deals four hands
of five cards each from a shuffled deck. Display all of the hands of cards, along with
the cards remaining in the deck after the hands have been dealt.

Exercise 142: Is a List Already in Sorted Order?
(41 Lines)

Write a function that determines whether or not a list of values is in sorted order
(either ascending or descending). The function should return True if the list is
already sorted. Otherwise, it should return False. Write a main program that reads
a list of numbers from the user and uses your function to report whether or not it is
sorted.

Make sure you consider these questions when completing this exercise: Is a list
that is empty in sorted order? What about a list containing only one element?

Exercise 143: Count the Elements
(Solved, 48 Lines)

Python’s standard library includes a method named count that determines how
many times a specific value occurs in a list. In this exercise, you will create a new
function named countRange. It will count and return the number of elements
within a list that are greater than or equal to some minimum value, and less than
some maximum value. Your function will take three parameters: the list, the minimum
value and the maximum value. It will return an integer result greater than or equal to
0. Include a main program that demonstrates your function by applying it to several
different lists, minimum values and maximum values. Ensure that your program
works correctly for both lists of integers and lists of floating-point numbers.

5.6 Exercises 117

Exercise 144: Tokenizing a String
(Solved, 48 Lines)

Tokenizing is the process of converting a string into a list of substrings, known
as tokens. In many circumstances, a list of tokens is easier to work with than the
original string because the original string may have irregular spacing. In some cases,
substantial work is also required to determine where one token ends and the next one
begins.

In a mathematical expression, tokens are items such as operators, numbers and
parentheses. The operator symbols that will be considered in this (and subsequent)
problems are *, /, ˆ, - and +. Operators and parentheses are easy to identify because
the token is always a single character, and the character is never part of another token.
Numbers are slightly more challenging to identify because the token may consist of
multiple characters. Any sequence of consecutive digits should be treated as one
number token.

Write a function that takes a string containing a mathematical expression as its
only parameter and breaks it into a list of tokens. Each token should be a parenthesis,
an operator, or a number. (For simplicity, only integers will be considered in this
problem). Return the list of tokens as the function’s only result.

You may assume that the string passed to your function always contains a valid
mathematical expression consisting of parentheses, operators and integers. However,
your function must handle variable amounts of whitespace (including no whitespace)
between these elements. Include a main program that demonstrates your tokenizing
function by reading an expression from the user and printing the list of tokens. Ensure
that the main program will not run when the file containing your solution is imported
into another program.

Exercise 145: Unary and Binary Operators
(Solved, 45 Lines)

Some mathematical operators are unary, while others are binary. Unary operators act
on one value, while binary operators act on two. For example, in the expression 2
* -3, the * is a binary operator because it acts on both 2 and -3, while the - is a
unary operator because it only acts on 3.

An operator’s symbol is not always sufficient to determine whether it is unary or
binary. For example, while the - operator was unary in the previous expression, the
same character is used to represent the binary - operator in an expression such as
2 - 3. This ambiguity, which is also present for the + operator, must be removed
before other interesting operations can be performed on a list of tokens representing
a mathematical expression.

Create a function that identifies unary + and - operators in a list of tokens, and
replaces them with u+ and u-, respectively. Your function will take a list of tokens
for a mathematical expression as its only parameter. Its only result will be a new list
of tokens where the unary + and - operators have been replaced. A + or - operator
is unary if it is the first token in the list, or if the token that immediately precedes it
is an operator or open parenthesis. Otherwise, the operator is binary.

118 5 Lists

Write a main program that demonstrates that your function works correctly by
reading, tokenizing, and marking the unary operators in an expression entered by
the user. Your main program should not execute when your function is imported into
another program.

Exercise 146: Infix to Postfix
(63 Lines)

Mathematical expressions are often written in infix form, where operators appear
between the operands on which they act. While this is a common form, it is also
possible to express mathematical expressions in postfix form, where the operator
appears after all of its operands. For example, the infix expression 3 + 4 is written
as 3 4 + in postfix form. One can convert an infix expression to postfix form using
the following algorithm:

Create a new empty list, operators
Create a new empty list, postfix

For each token in the infix expression
If the token is an integer then

Append the token to postfix
If the token is an operator then

While operators is not empty and
the last item in operators is not an open parenthesis and
precedence(token) < precedence(last item in operators) do

Remove the last item from operators and append it to postfix
Append the token to operators

If the token is an open parenthesis then
Append the token to operators

If the token is a close parenthesis then
While the last item in operators is not an open parenthesis do

Remove the last item from operators and append it to postfix
Remove the open parenthesis from operators

While operators is not the empty list do
Remove the last item from operators and append it to postfix

Return postfix as the result of the algorithm

Use your solutions to Exercises 144 and 145 to tokenize a mathematical expression
and identify any unary operators in it. Then use the algorithm above to transform the
expression from infix form to postfix form. Your code that implements the preceding
algorithm should reside in a function that takes a list of tokens representing an
infix expression (with the unary operators marked) as its only parameter. It should

5.6 Exercises 119

return a list of tokens representing the equivalent postfix expression as its only result.
Include a main program that demonstrates your infix to postfix function by reading
an expression from the user in infix form and displaying it in postfix form.

You may find your solutions to Exercises 109 and 110 helpful when completing
this problem. While you should be able to use your solution to Exercise 109 without
any modifications, your solution to Exercise 110 will need to be extended so that it
returns the correct precedence for the unary operators. The unary operators should
have higher precedence than multiplication and division, but lower precedence than
exponentiation.

Exercise 147: Evaluate Postfix
(63 Lines)

Evaluating a postfix expression is easier than evaluating an infix expression because
it does not contain any parentheses, and there are no operator precedence rules to
consider. A postfix expression can be evaluated using the following algorithm:

Create a new empty list, values

For each token in the postfix expression
If the token is a number then

Convert it to an integer and append it to values
Else if the token is a unary minus then

Remove the last integer from values
Negate the integer and append the result of the negation to values

Else if the token is a binary operator then
Remove the last integer from values and call it right
Remove the last integer from values and call it left
Compute the result of applying the operator to left and right
Append the result to values

Return the first item in values as the value of the expression

Write a program that reads a mathematical expression in infix form from the user,
converts it to postfix form, evaluates it, and displays its value. Use your solutions to
Exercises 144, 145 and 146, along with the algorithm above, to solve this problem.

The algorithms provided in Exercises 146 and 147 do not perform any error
checking. As a result, your programs may crash or generate incorrect results
if you provide them with invalid input. These algorithms can be extended to
detect and respond to invalid input in a reasonable manner. Doing so is left as
an independent study exercise for the interested reader.

120 5 Lists

Exercise 148: Does a List Contain a Sublist?
(44 Lines)

A sublist is a list that is part of a larger list. It may be a list containing a single
element, multiple elements, or even no elements at all. For example, [1], [2], [3]
and [4] are all sublists of [1, 2, 3, 4]. The list [2, 3] is also a sublist of
[1, 2, 3, 4], but [2, 4] is not a sublist of [1, 2, 3, 4] because 2 and
4 are not adjacent in the longer list. The empty list is a sublist of every list. As a
result, [] is a sublist of [1, 2, 3, 4]. A list is a sublist of itself, meaning that
[1, 2, 3, 4] is also a sublist of [1, 2, 3, 4].

In this exercise, you will create a function, isSublist, that determines whether
or not one list is a sublist of another. Your function should take two lists, larger
and smaller, as its only parameters. It should return True if and only if smaller
is a sublist of larger. Write a main program that demonstrates your function.

Exercise 149: Generate All Sublists of a List
(Solved, 40 Lines)

Using the definition of a sublist from Exercise 148, write a function that returns a
list containing every possible sublist of a list. For example, the sublists of [1, 2,
3] are [], [1], [2], [3], [1, 2], [2, 3] and [1, 2, 3]. Note that your
function will always return a list containing at least the empty list because the empty
list is a sublist of every list. Include a main program that demonstrates your function
by displaying all of the sublists of several different lists.

Exercise 150: The Sieve of Eratosthenes
(Solved, 33 Lines)

The Sieve of Eratosthenes is a technique that was developed more than 2,000 years
ago to easily find all of the prime numbers between 2 and some limit, say 100. A
description of the algorithm follows:

Write down all of the numbers from 0 to the limit
Cross out 0 and 1 because they are not prime

Set p equal to 2
While p is less than the limit do

Cross out all multiples of p (but not p itself)
Set p equal to the next number in the list that is not crossed out

Report all of the numbers that have not been crossed out as prime

The key feature of this algorithm is that it is relatively easy to cross out every . nth

number on a piece of paper. This is also an easy task for a computer; a for loop can

5.6 Exercises 121

simulate this behavior when a third parameter is provided to range. When a number
is crossed out, it is known that it is not prime, but it still occupies space on the piece
of paper, and must still be considered when identifying later prime numbers. As a
result, you should not simulate crossing out a number by removing it from the list.
Instead, you should replace it with 0. Then, once the algorithm completes, all of the
non-zero values in the list are prime.

Create a Python program that uses this algorithm to display all of the prime
numbers between 2 and a limit entered by the user. If you implement the algorithm
correctly, you should be able to display all of the prime numbers less than 1,000,000
in a few seconds.

This algorithm for finding prime numbers is not Eratosthenes’ only claim to
fame. His other noteworthy accomplishments include calculating the circum-
ference of the Earth and the tilt of the Earth’s axis. He also served as the Chief
Librarian at the Library of Alexandria.

Exercise 151: Normal Magic Squares
(Solved, 110 Lines)

A magic square is a table of values where the number of rows and columns is equal,
and each row, column and diagonal sums to the same value. A table that meets these
requirements can be constructed by placing the same value at every location in it,
but such a magic square is not particularly interesting. A normal magic square is a
magic square that only includes consecutive integers starting from one. There are
many arrangements of consecutive integers that form a normal magic square when
the table has three or more rows and columns.

Write a program that reads a table of integers from the user and reports whether
or not the entered integers represent a normal magic square. If the values do not
represent a normal magic square then your program should report whether or not
it represents a magic square without the consecutive integers constraint. The user
will provide each row in the table as a single line of input, with the values for the
row separated by commas. Once your program reads the first row, it should use the
number of values in that row to determine how many additional rows of input should
be read. Your program should include appropriate error checking. In particular, it
should display a meaningful error message and exit if any of the subsequent lines of
input entered by the user do not contain the same number of values as the first line.

122 5 Lists

There are no arrangements of the integers 1–4 that can be placed in a two-
by-two table to form a normal magic square. This can be demonstrated by
considering all possible arrangements of those integers within the table and
showing that none of them have rows, columns and diagonals that all sum to
the same value. A one-by-one table containing only the integer 1 is a normal
magic square, though perhaps not a particularly interesting one.

Exercise 152: Creating a Normal Magic Square
(43 Lines)

Several techniques have been developed for creating normal magic squares. The
Siamese method will be considered in this exercise. This technique builds an. n by. n
normal magic square in a reasonably straightforward manner, but it only works for
odd values of. n. Its general approach is to place the values from 1 to.n2 into the table
in sequence. The first value is placed in the center of the top row. After each value is
placed, the location for the next value is determined, with the movement generally
progressing up and to the right (wrapping around the edges of the board when they
are encountered). The complete algorithm is shown below.

Initialize all of the elements in an n-by-n table to 0
Initialize row and col so that they refer to the middle element in the top row
Initialize num to 1

While num is less than or equal to n2 do
Store num into the table at the position indicated by row and col
Increment num

Compute next_row by moving up one row, wrapping around to the bottom
of the board if row is currently the top row

Compute next_col by moving one column to the right, wrapping around to
the left edge of the board if col is currently the rightmost column

If the value in the table at new_row and new_col is not 0 then
Set row to one row below its current value, wrapping around to the top
of the board if row is currently the bottom row

Else
Set row equal to next_row and set col equal to next_col

5.6 Exercises 123

Create a program that uses the Siamese method to create a magic square. Your
program will begin by reading the value of . n from the user. Then it will use the
provided algorithm to create the magic square and display it. Your program should
only attempt to populate the table if the value entered by the user is an odd positive
integer. Otherwise, your program should display an appropriate error message and
quit.

6Dictionaries

There are many parallels between lists and dictionaries. Like lists, dictionaries allow
several, even many, values to be stored in one variable. Each element in a list has a
unique integer index, and these integer indices must increase sequentially from zero.
Similarly, each value in a dictionary has a unique key, but a dictionary’s keys are
more flexible than a list’s indices. A dictionary’s keys can be integers. They can also
be floating-point numbers or strings. When the keys are numeric, they do not have
to start from zero, nor do they have to be sequential. When the keys are strings, they
can be any combination of characters, including the empty string. All of the keys in
a dictionary must be distinct, just as all of the indices in a list are distinct.

Every key in a dictionary must have a value associated with it. The value associated
with a key can be an integer, a floating-point number, a string or a Boolean value. It
can also be a list, or even another dictionary. A key and it’s corresponding value are
often referred to as a key-value pair. While the keys in a dictionary must be distinct,
there is no parallel restriction on the values. Consequently, the same value can be
associated with multiple keys.

Starting in Python 3.7, the key-value pairs in a dictionary are always stored in the
order in which they were added to it. 1 There is no mechanism for inserting a key-
value pair into the middle of an existing dictionary. Key-value pairs can be removed
from a dictionary. Removing a key-value pair from a dictionary does not change the
order of the remaining key-value pairs in it.

A variable that holds a dictionary is created using an assignment statement. The
empty dictionary, which does not contain any key-value pairs, is denoted by .{} (an
open brace immediately followed by a close brace). A non-empty dictionary can
be created by including a comma separated collection of key-value pairs inside the
braces. A colon is used to separate the key from its value in each key-value pair.

1 The order in which the key-value pairs were stored was not guaranteed to match the order in which
they were added to the dictionary in earlier versions of Python.

© Springer Nature Switzerland AG 2025
B. Stephenson, The Python Workbook, Texts in Computer Science,
https://doi.org/10.1007/978-3-031-84560-4_6

125

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_6&domain=pdf
https://doi.org/10.1007/978-3-031-84560-4_6
https://doi.org/10.1007/978-3-031-84560-4_6
https://doi.org/10.1007/978-3-031-84560-4_6
https://doi.org/10.1007/978-3-031-84560-4_6
https://doi.org/10.1007/978-3-031-84560-4_6
https://doi.org/10.1007/978-3-031-84560-4_6
https://doi.org/10.1007/978-3-031-84560-4_6
https://doi.org/10.1007/978-3-031-84560-4_6
https://doi.org/10.1007/978-3-031-84560-4_6
https://doi.org/10.1007/978-3-031-84560-4_6
https://doi.org/10.1007/978-3-031-84560-4_6

126 6 Dictionaries

For example, the following program creates a dictionary with three key-value pairs,
where the keys are strings, and the values are floating-point numbers. Each key-value
pair associates the name of a common mathematical constant to its value. Then all
of the key-value pairs are displayed by calling the print function.

6.1 Accessing, Modifying and Adding Values

Accessing a value in a dictionary is similar to accessing a value in a list. When the
index of a list element that needs to be accessed is known, one can use the name of
the list and the index enclosed in square brackets to access the value at that location.
Similarly, when the key associated with a value that needs to be accessed is known,
one can use the name of the dictionary and the key enclosed in square brackets to
access the value associated with that key.

Modifying an existing value in a dictionary, and adding a new key-value pair to
a dictionary, are both performed using an assignment statement. The name of the
dictionary, along with the key enclosed in square brackets, is placed to the left of the
assignment operator, and the value to associate with the key is placed to its right. If the
key is already present in the dictionary, then the assignment statement will overwrite
the key’s current value with the value to the right of the assignment operator. If the
key is not already present in the dictionary, then a new key-value pair is added to it.
These operations are demonstrated in the following program.

When this program executes, it creates a dictionary named results that initially
has two keys: pass and fail. The value associated with each key is 0. A third key,

6.3 Additional Dictionary Operations 127

withdrawal, is added to the dictionary with the value 1 using an assignment
statement. Then the value associated with pass is updated to 3 using a second
assignment statement. The line that follows retrieves the current value associated
with fail, which is 0, adds 1 to it, and then stores this new value back into the
dictionary, replacing the previous value. When the values are printed, 1 (the value
currently associated with fail) is displayed on the first line, 3 (the value currently
associated with pass) is displayed on the second line, and 1 (the value currently
associated with withdrawal) is displayed on the third line.

6.2 Removing a Key-Value Pair

A key-value pair is removed from a dictionary using the pop method. One argument,
which is the key to remove, must be supplied when the method is called. When the
method executes, it removes both the key and the value associated with it from the
dictionary. Unlike a list, the last key-value pair cannot be removed from a dictionary
by calling pop without any arguments.

The pop method returns the value associated with the key that it removed from the
dictionary. This value can be stored into a variable using an assignment statement, or
it can be used anywhere else that a value is needed, such as passing it as an argument
to another function or method call, or as part of an arithmetic expression.

6.3 Additional Dictionary Operations

Some programs add key-value pairs to dictionaries where the key and the value were
read from the user. Once all of the key-value pairs have been stored in the dictionary,
it might be necessary to determine how many there are, whether a particular key
is present in the dictionary, or whether a particular value is present in it. Python
provides functions, methods and operators that allow these tasks to be performed.

The len function, which was previously used to count the number of characters
in a string or the number of elements in a list, can also be used to determine how many
key-value pairs are in a dictionary. The dictionary is passed as the only argument
to the function, and the number of key-value pairs is returned as the function’s only
result. The len function returns 0 if the dictionary passed to it is empty.

The in operator can be used to determine whether or not a particular key or value
is present in a dictionary. When searching for a key, the key appears to the left of the
in operator, and a dictionary appears to its right. The operator evaluates to True
if the key is present in the dictionary. Otherwise, it evaluates to False. The result
returned by the in operator can be used anywhere that a Boolean value is needed,
including in the condition of an if statement or while loop.

The in operator is used together with the values method to determine whether
or not a value is present in a dictionary. The value being searched for appears to

128 6 Dictionaries

the left of the in operator, and a dictionary, with the values method applied to it,
appears to its right. For example, the following code segment determines whether or
not any of the values in dictionary d are equal to the value stored in x.

6.4 Loops and Dictionaries

A for loop can be used to iterate over all of the keys in a dictionary, as shown below.
A different key from the dictionary is stored into the for loop’s control variable, k,
each time the loop body executes.

When this program executes, it begins by creating a new dictionary that contains
three key-value pairs. Then the for loop iterates over the keys in the dictionary. The
first key in the dictionary, which is pi, is stored into k, and the body of the loop
executes. It displays a message that includes both pi and its value, which is 3.14.
Then control returns to the top of the loop and e is stored into k. The loop body
executes for a second time which displays a message indicating that the value of e
is 2.71. Finally, the loop executes for a third time with k equal to root 2, and the
final message is displayed.

A for loop can also be used to iterate over the values in a dictionary (instead
of the keys). This is accomplished by applying the values method, which does
not take any arguments, to a dictionary when creating the collection of values used
by the for loop. For example, the following program computes the sum of all of
the values in a dictionary. When it executes, constants.values() will be a
collection that includes 3.14, 2.71 and 1.41. Each of these values is stored in v as
the for loop runs, and this allows the total to be computed without using any of the
dictionary’s keys.

6.5 Dictionaries as Arguments and Return Values 129

Some problems involving dictionaries are better solved with while loops than
for loops. For example, the following program uses a while loop to read strings
from the user until 5 unique values have been entered. Then all of the strings are
displayed with their counts.

When this program executes, it begins by creating an empty dictionary. Then the
while loop condition is evaluated. It determines how many key-value pairs are in
the dictionary using the len function. Since the number of key-value pairs is initially
0, the condition evaluates to True, and the loop’s body executes.

Each time the loop’s body executes, a string is read from the user. Then the
in operator is used to determine whether or not the string is already a key in the
dictionary. If so, the count associated with the key is increased by one. Otherwise, the
string is added to the dictionary as a new key with a value of 1. The loop continues
executing until the dictionary contains 5 key-value pairs. Once this occurs, all of
the strings that were entered by the user are displayed, along with their associated
values.

6.5 Dictionaries as Arguments and Return Values

Dictionaries can be passed as arguments to functions, just like values of other types.
As with lists, a change made to a parameter variable that contains a dictionary can
modify both the parameter variable and the argument passed to the function. For

130 6 Dictionaries

example, inserting or deleting a key-value pair will modify both the parameter vari-
able and the argument, as will modifying the value associated with one key in the
dictionary using an assignment statement. However, an assignment to the entire dic-
tionary (where only the name of the variable holding the dictionary appears to the left
of the assignment operator) only impacts the parameter variable. It does not modify
the argument passed to the function. Like other types, dictionaries are returned from
a function using the return keyword.

6.6 Debugging

While there are many parallels that can be drawn between lists and dictionaries, there
also several notable differences. These differences must be carefully considered when
locating and correcting errors in programs that make use of dictionaries.

6.6.1 Syntax Errors

Braces are used when a dictionary is first created, but square brackets are used when
a new key-value pair is added to the dictionary. Square brackets are also used when
the value associated with a key is accessed or updated. Using square brackets instead
of braces when a dictionary is created is a syntax error, as is using braces instead of
square brackets when a value is accessed or updated at a later time. In both cases,
Python correctly reports the line where the error is located, but only a generic invalid
syntax message is displayed, leaving the programmer to recognize that the wrong
kind of brackets were used. For example, the error message that is displayed when
square brackets are used instead of braces during the creation of a dictionary is shown
below.

6.6.2 Runtime Errors

Attempting to retrieve the value associated with a key that isn’t in the dictionary
will cause the program to terminate with a KeyError. When this error occurs,
Python displays a helpful error message that identifies the portion of the line where
the invalid key was used. The error message also displays the key that wasn’t in the
dictionary. Examining the key allows the programmer to determine whether or not
the intended key was accessed. If the correct key is displayed, then the programmer
will have to determine why it is not present in the dictionary. If an incorrect key is
displayed, then the focus will be on how that key was computed.

6.7 Exercises 131

Another runtime error that can be encountered when working with dictionaries is
a TypeError where the explanation provided by Python is ‘set’ object is
not subscriptable. This error occurs when one inadvertently uses commas,
instead of colons, to separate the keys and values when a dictionary is first created.
While one might expect this to be reported as a syntax error, it is not, because sets
(which are not discussed in this book) can be created by enclosing a collection of
values in braces and separating them with commas.

Unfortunately, the runtime error reported by Python in this situation neither iden-
tifies the line that needs to be corrected, nor the steps needed to correct the error.
The error will be reported for a line which attempts to access or update a value in the
dictionary, but the correction is needed on the line where the programmer attempted
to create the dictionary with keys and values separated by commas instead of colons.
Awareness of this will, hopefully, allow you to track down and correct this error
quickly if you make this mistake at some point in the future.

The final runtime error that will be considered in this section is a NameError.
This error occurs when a dictionary has keys that are strings, but the programmer
fails to enclose the string’s characters in double quotes when accessing or updating
the value associated with a key. Without the double quotes, the characters are treated
as a variable name by Python, and a NameError is reported if that variable does
not exist. This error is corrected by inserting the missing double quotes.

6.6.3 Logic Errors

When a value is assigned to a key that isn’t present in a dictionary, that key will be
added to the dictionary with the provided value. This makes adding a new key-value
pair to a dictionary convenient, but can also result in a new pair being added to the
dictionary due to a typo or incorrectly computed key. A programmer can detect that
a key-value pair has incorrectly been added to the dictionary by displaying either the
number of key-value pairs, or the entire dictionary. Assertions can also be added to
the program to ensure that the number of key-value pairs is unchanged in functions
that are not supposed to add new keys to the dictionary.

6.7 Exercises

While many of the exercises in this chapter can be solved with lists or if statements,
they can also be solved effectively using dictionaries. As a result, you should use
dictionaries to solve all of these exercises instead of (or in addition to) using the
Python features that you have been introduced to previously.

132 6 Dictionaries

Exercise 153: Reverse Lookup
(Solved, 46 Lines)

Write a function, named reverseLookup, that finds all of the keys in a dictionary
that map to a specific value. The function will take the dictionary and the value to
search for as its only parameters. It will return a (possibly empty) list of keys from
the dictionary that map to the provided value.

Include a main program that demonstrates the reverseLookup function as part
of your solution to this exercise. Your program should create a dictionary, and then
show that the reverseLookup function works correctly when it returns multiple
keys, a single key, and no keys. Ensure that your main program only runs when
the file containing your solution to this exercise has not been imported into another
program.

Exercise 154: Two Dice Simulation
(Solved, 46 Lines)

Write a function that simulates rolling a pair of six-sided dice. Your function will
not take any parameters. It will return the total that was rolled on two dice as its only
result.

Continue by writing a main program that uses your function to simulate rolling
two six-sided dice 1,000 times. As your program runs, it should count the number of
times that each total occurs. Then it should display a table that summarizes this data.
Express the frequency for each total as a percentage of the rolls performed. Your
program should also display the percentage expected by probability theory for each
total. Sample output is shown below.

Total Simulated Expected
Percent Percent

2 2.90 2.78
3 6.90 5.56
4 9.40 8.33
5 11.90 11.11
6 14.20 13.89
7 14.20 16.67
8 15.00 13.89
9 10.50 11.11
10 7.90 8.33
11 4.50 5.56
12 2.60 2.78

6.7 Exercises 133

Exercise 155: Text Messaging
(31 Lines)

On some basic cell phones, text messages can be sent using the numeric keypad.
Because each key has multiple letters associated with it, multiple key presses are
needed for most letters. Pressing the number once generates the first character listed
for that key. Pressing the number 2, 3, 4 or 5 times generates the second, third, fourth
or fifth character.

Key Characters
1 . , ? ! :
2 A B C
3 D E F
4 G H I
5 J K L
6 M N O
7 P Q R S
8 T U V
9 W X Y Z
0 space

Write a program that displays the key presses needed for a message entered by the
user. Construct a dictionary that maps from each letter or symbol to the key presses
needed to generate it. Then use the dictionary to create and display the presses needed
for the user’s message. For example, if the user enters Hello, World! then your
program should output 4433555555666110966677755531111. Ensure that
your program handles both uppercase and lowercase letters. Ignore any characters
that aren’t listed in the table above, such as semicolons and parentheses.

Exercise 156: Morse Code
(23 Lines)

Morse code is an encoding scheme that uses dashes and dots to represent digits and
letters. In this exercise, you will write a program that uses a dictionary to store the
mapping from these symbols to Morse code. Use a period to represent a dot, and
a hyphen to represent a dash. The mapping from characters to dashes and dots is
shown in Table 6.1.

Create a program that begins by reading a message from the user. Then it should
translate all of the letters and digits in the message to Morse code, leaving a space
between each sequence of dashes and do ts. Your program should ignore any charac-
ters that are not listed in the table. The Morse code for Hello, World! is shown
below:

..... . .-.. .-.. --- .-- --- .-. .-.. -..

134 6 Dictionaries

Table 6.1 Morse code for letters and digits

Character Code Character Code Character Code Character Code

A .- J .- - - S ... 1 .- - - -

B -... K -.- T - 2 ..- - -

C -.-. L .-.. U ..- 3 ...- -

D -.. M - - V ...- 4-

E . N -. W .- - 5

F ..-. O - - - X -..- 6 -....

G - -. P .- -. Y -.- - 7 - -...

H Q - -.- Z - -.. 8 - - -..

I .. R .-. 0 - - - - - 9 - - - -.

Morse code was originally developed in the nineteenth century for use over
telegraph wires. It is still used today, more than 160 years after it was first
created.

Exercise 157: Postal Codes
(41 Lines)

The first, third and fifth characters in a Canadian postal code are letters, while the
second, fourth and sixth characters are digits. The province or territory in which an
address resides can be determined from the first character of its postal code, as shown
in the following table. No valid postal codes currently begin with D, F, I, O, Q, U,
W, or Z.

Province/Territory First Character(s)

Newfoundland A
Nova Scotia B
Prince Edward Island C
New Brunswick E
Quebec G, H and J
Ontario K, L, M, N and P
Manitoba R
Saskatchewan S
Alberta T
British Columbia V
Nunavut X
Northwest Territories X
Yukon Y

6.7 Exercises 135

The second character in a postal code identifies whether the address is rural or
urban. If that character is a 0, then the address is rural. Otherwise, it is urban.

Create a program that reads a postal code from the user and displays the province
or territory associated with it, along with whether the address is urban or rural. For
example, if the user enters T2N 1N4, then your program should indicate that the
postal code is for an urban address in Alberta. If the user enters X0A 1B2, then
your program should indicate that the postal code is for a rural address in Nunavut or
Northwest Territories. Use a dictionary to map from the first character of the postal
code to the province or territory. Display a meaningful error message if the postal
code begins with an invalid character, or if the second character in the postal code is
not a digit.

Exercise 158: Write out Numbers in English
(69 Lines)

While the popularity of cheques as a payment method has diminished in recent years,
some companies still issue them to pay employees or vendors. The amount being
paid normally appears on a cheque twice, with one occurrence written using digits,
and the other occurrence written using English words. Repeating the amount in two
different forms makes it much more difficult for an unscrupulous employee or vendor
to modify the amount on the cheque before depositing it.

In this exercise, your task is to create a function that takes an integer between 0
and 999 as its only parameter, and returns a string containing the English words for
that number. For example, if the argument to the function is 142, then your function
should return "one hundred forty two". Use one or more dictionaries to
implement your solution, rather than large if/elif/else constructs. Include a main
program that reads an integer from the user and displays its value in English words.

Exercise 159: Unique Characters
(Solved, 17 Lines)

Create a program that counts and displays the number of unique characters in a string
entered by the user. For example, Hello, World! has 10 unique characters, while
zzz has only one unique character. Use a dictionary (or set) to solve this problem.

Exercise 160: Anagrams
(Solved, 42 Lines)

Two words are anagrams if they contain all of the same letters, but in a different
order. For example, “evil” and “live” are anagrams because each contains one “e”,

136 6 Dictionaries

one “i”, one “l”, and one “v”. Create a program that reads two strings from the user,
determines whether or not they are anagrams, and reports the result.

Exercise 161: Anagrams Again
(48 Lines)

The notion of anagrams can be extended to multiple words. For example, “William
Shakespeare” and “I am a weakish speller” are anagrams when capitalization and
spacing are ignored.

Extend your program from Exercise 160 so that it checks if two phrases are
anagrams. Your program should ignore capitalization, punctuation marks and spacing
when making the determination.

Exercise 162: Capital Quiz
(46 Lines)

Elementary school students are often asked to memorize the capital cities of the
states or provinces of their country, or of various countries around the world. In this
exercise, you will create a program that tests an individual’s knowledge of these
capital cities. Begin by creating a dictionary where the keys are states, provinces
or countries, and the values are capital cities. Then your program should create 10
questions by randomly selecting keys from the dictionary, and asking the user to
identify the capital city associated with each key. Once the user has answered 10
questions, their score should be displayed. Ensure that your program keeps track
of the questions it has already asked so that the quiz does not include any repeated
questions.

Exercise 163: Converting from Hexadecimal to Binary
(Solved, 33 Lines)

In Exercise 118, numbers were converted from one base to another by converting the
number from the original base to base 10, and then from base 10 to the desired base.
That process achieves the desired goal, but it involves quite a bit of multiplication
and division. As such, it can be a little bit tedious to complete, especially when
performing the calculations by hand.

In some cases, it is possible to convert directly from one base to another, without
using base 10 as an intermediate step. This kind of direct conversion is performed
using a lookup table instead of multiplication and division, which can make it faster
and easier to perform by hand. However, this direct conversion approach can only
be used in limited circumstances. Specifically, it can only be performed when one
of the bases involved is an integer power of the other. For example, one can perform

6.7 Exercises 137

a direct conversion from hexadecimal to binary because .24 = 16, but one cannot
perform a direct conversion from binary to decimal because .23.3219 = 10.

Create a program that converts a number directly from hexadecimal to binary.
Begin by constructing a dictionary that maps each hexadecimal digit to four binary
digits (with leading zeros included as necessary). Then convert the hexadecimal
number to binary by converting each of its digits in sequence. Your program should
display an appropriate error message and exit if the string entered by the user contains
any characters that are not valid hexadecimal digits.

Exercise 164: Scrabble™ Score
(Solved, 22 Lines)

In the game of Scrabble™, each letter has points associated with it. The total score
of a word is the sum of the scores of its letters. More common letters are worth fewer
points, while less common letters are worth more points. The points associated with
each letter are shown below:

Points Letters

1 A, E, I, L, N, O, R, S, T and U
2 D and G
3 B, C, M and P
4 F, H, V, W and Y
5 K
8 J and X
10 Q and Z

Write a program that computes and displays the Scrabble™ score for a word.
Create a dictionary that maps from letters to point values. Then use the dictionary
to look up the value for each letter in a string entered by the user, and compute its
score.

A Scrabble™ board includes some spaces that multiply the value of a letter or
the value of an entire word. These spaces will be ignored in this exercise.

Exercise 165: Birthstones (Again)
(Solved, 44 Lines)

A program that displayed the birthstone(s) associated with each month was developed
in Exercise 49. That process will be reversed in this exercise. Create a program that
reads a birthstone from the user, uses a dictionary to determine what month is asso-
ciated with the entered value, and displays the result. Continue reading birthstones

138 6 Dictionaries

and displaying results until the user enters a blank line. If the user provides an input
value that is not a valid birthstone, then your program should display an appropriate
error message before going on to read another input value. Ensure that your program
works correctly for months that have multiple birthstones. For example, November
should be displayed if the user enters either topaz or citrine.

Exercise 166: Create a Bingo Card
(Solved, 58 Lines)

A bingo card consists of 5 columns of 5 numbers which are labeled with the letters B,
I, N, G and O. There are 15 numbers that can appear under each letter. In particular,
the numbers that can appear under the B range from 1 to 15, the numbers that can
appear under the I range from 16 to 30, the numbers that can appear under the N
range from 31 to 45, and so on. A bingo card does not contain any repeated values.

Write a function that creates a random bingo card and stores it in a dictionary.
The keys will be the letters B, I, N, G and O. The values will be lists, each of which
will hold five numbers. Write a second function that displays the bingo card with the
columns labeled appropriately. Use these functions to write a program that displays a
random bingo card. Ensure that the main program only runs when the file containing
your solution has not been imported into another program.

You may be aware that bingo cards often have a “free” space in the middle of
the card. The free space won’t be considered in this exercise.

Exercise 167: Checking for a Winning Card
(102 Lines)

A winning bingo card contains a line of 5 numbers that have all been called. Players
normally record the numbers that have been called by crossing them out or marking
them with a bingo dauber. In this exercise, numbers will be marked by replacing
them with a 0 in the bingo card dictionary.

Write a function that takes a dictionary representing a bingo card as its only
parameter. If the card contains a line of five zeros (vertical, horizontal or diagonal),
then your function should return True to indicate that the card has won. Otherwise,
the function should return False.

Create a main program that demonstrates your function by creating several bingo
cards, displaying them, and indicating whether or not they contain a winning line.
You should demonstrate your function with at least one card with a horizontal line,
at least one card with a vertical line, at least one card with a diagonal line, and at
least one card that has some numbers crossed out but does not contain a winning line.

6.7 Exercises 139

You will probably want to import your solution to Exercise 166 when completing
this exercise.

Hint: Because there are no negative numbers on a bingo card, finding a line of
5 zeros is equivalent to finding a line of 5 entries that sum to zero. You may
find the summation problem easier to solve.

Exercise 168: Play Bingo
(88 Lines)

In this exercise, you will write a program that simulates a game of bingo for a single
card. Begin by generating a random bingo card and a list of all of the valid bingo
calls (B1 through O75). Once that list has been created, you can randomize the order
of its elements by either using the shuffle function you wrote when completing
Exercise 140, or by calling the shuffle function in the random module. Then
your program should consume calls from the list and cross out matching numbers on
the card until the card contains a winning line. Simulate 1,000 games, and report the
minimum, maximum and average number of calls that were made before the card
won. You may find it helpful to import your solutions to Exercises 166 and 167 when
completing this exercise.

Exercise 169: Resistor Color Bands
(46 Lines)

Resistors are an important part of many electronic circuits. They impede the flow
of electricity, with larger values indicating that it is more difficult for electricity to
pass through them. When resistors are created, they are often printed with four color
bands. The first three indicate the amount of resistance, and the fourth (which will
be ignored in this exercise) indicates the tolerance of the resistor. The amount of
resistance is calculated by using the values associated with the first two bands to
form a two-digit number, and then multiplying that number by the factor indicated
by the third band. The value and multiplier associated with each color is shown in
Table 6.2.

Write a program that reads three colors from the user. The first two colors will be
values, and the third will be the multiplier. Once these values have been read, your
program should display the resistance of a resistor baring those colors. For example,
if the user enters red, green, and orange, then your program should display 25,000
Ohms because the first two bands, red and green, represent 25, and the orange band
indicates that this value must be multiplied by 1,000.

Use one or more dictionaries to look up the value and multiplier associated with
each color, rather than using a large collection of if statements. Display an appro-

140 6 Dictionaries

Table 6.2 Values and multipliers for resistor color bands

Color Value Multiplier

Black 0 x1

Brown 1 x10

Red 2 x100

Orange 3 x1,000

Yellow 4 x10,000

Green 5 x100,000

Blue 6 x1,000,000

Violet 7 x10,000,000

Gray 8 x100,000,000

White 9 x1,000,000,000

priate error message and exit if any value read from the user is not a valid color. The
output from your program should include comma separators in large values so that
they are easier to read.

7Files and Exceptions

The programs that you have created so far have read all of their input from the
keyboard. As a result, it has been necessary to type all of the values needed by those
programs each time they are run. This is inefficient, particularly for programs that
require a lot of input. Similarly, your programs have displayed all of their results on
the screen. While this works well when only a few lines of output are printed, it is
impractical for larger results that move off the screen too quickly to be read, or for
output that requires further analysis by other programs. Writing programs that use
files effectively will allow you to address these concerns.

Files are relatively permanent. The values stored in them are retained after a
program completes, even when the computer is turned off. This makes them suitable
for storing results that are needed for an extended period of time, and for holding input
values for a program that will be run several times. Examples of files that you have
probably worked with previously include word processor documents, spreadsheets,
images, and videos, among others. Your Python programs are also stored in files.

Files are commonly classified as being text files or binary files. Text files only
contain sequences of bits that represent characters using an encoding system such as
ASCII or UTF-8. These files can be viewed and modified with a text editor. All of
the Python programs that you have created have been saved as text files.

Like text files, binary files also contain sequences of bits. But unlike text files,
those sequences of bits can represent any kind of data—they are not restricted to
characters alone. Files that contain images, sounds, and videos are normally binary
files. Only text files are considered in this book because they are easy to create and
view with a text editor, but most of the concepts apply to binary files as well.

© Springer Nature Switzerland AG 2025
B. Stephenson, The Python Workbook, Texts in Computer Science,
https://doi.org/10.1007/978-3-031-84560-4_7

141

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_7&domain=pdf
https://doi.org/10.1007/978-3-031-84560-4_7
https://doi.org/10.1007/978-3-031-84560-4_7
https://doi.org/10.1007/978-3-031-84560-4_7
https://doi.org/10.1007/978-3-031-84560-4_7
https://doi.org/10.1007/978-3-031-84560-4_7
https://doi.org/10.1007/978-3-031-84560-4_7
https://doi.org/10.1007/978-3-031-84560-4_7
https://doi.org/10.1007/978-3-031-84560-4_7
https://doi.org/10.1007/978-3-031-84560-4_7
https://doi.org/10.1007/978-3-031-84560-4_7
https://doi.org/10.1007/978-3-031-84560-4_7

142 7 Files and Exceptions

7.1 Opening a File

A file must be opened before any values can be read from it. It is also necessary to
open a file before new values are written to it. Files are opened by calling the open
function.

The open function takes two arguments. The first argument is a string containing
the name of the file that will be opened. The second argument is also a string. It
indicates what access mode will be used when the file is opened. The access modes
that will be discussed in this book include read (denoted by "r"), write (denoted by
"w") and append (denoted by "a").

A file object is returned by the open function. As a result, the open function is
normally called on the right side of an assignment statement, so that the file object
is stored in a variable, as shown below:

Once a file has been opened, methods can be applied to its file object to read
data from it. Similarly, data is written to the file by applying appropriate methods to
the file object, or by calling the print function with appropriate arguments. These
operations are described in the sections that follow. Once all of the values have
been read or written, the file should be closed. This is accomplished by applying the
close method to the file object.

7.2 Reading Input from a File

There are several methods that can be applied to a file object to read data from a
file. These methods can only be used when the file has been opened in read mode.
Attempting to read from a file that has been opened in write mode or append mode
will cause your program to crash.

The readline method reads one line from a file and returns it as a string, much
like the input function reads one line of text typed on the keyboard. Each subsequent
call to readline reads another line from the file. The lines are read sequentially,
from the beginning of the file to its end. The readline method returns an empty
string once the end of the file has been reached.

Consider a data file that contains a long list of numbers, each of which appears
on its own line. The following program totals the values in such a file.

7.2 Reading Input from a File 143

This program begins by reading the name of the file from the user. Once the name
has been read, the file is opened for reading, and the file object is stored in inf.
Then total is initialized to 0, and the first line is read from the file.

The condition on the while loop is evaluated next. If the first line read from the
file is non-empty, then the loop’s condition evaluates to True, and the body of the
loop executes. It converts the line read from the file into a floating-point number and
adds it to total. Then the next line is read from the file. If the file contains more
data, then line will contain the next value, the while loop condition will evaluate
to True, the loop will execute again, and another value will be added to the total.

At some point, all of the data will have been read from the file. When this occurs,
the readline method will return an empty string which will be stored into line.
This will cause the condition on the while loop to evaluate to False and the loop
to terminate. When this occurs, the program will close the file and display the total.

Sometimes, it is helpful to read all of the data from a file at once, instead of reading
it one line at a time. This can be accomplished using either the read method or the
readlines method. The read method returns the entire contents of the file as one
(potentially very long) string. Then further processing is typically performed to break
the string into smaller pieces. The readlines method returns a list where each
element is one line from the file. Once all of the lines are read with readlines,
a loop can be used to process each element in the list. For example, the following
program uses readlines to compute the sum of all of the numbers in a file. It
reads all of the data from the file before any values are summed, instead of adding
each number to the total as it is read from the file.

144 7 Files and Exceptions

7.3 End of Line Characters

The following example uses the readline method to read and display all of the
lines in a file. Each line is preceded by its line number and a colon when it is printed.

When you run this program, you might be surprised by its output. In particular,
each time a line from the file is printed, a second line, which is blank, is printed
immediately after it. This occurs because each line in a text file ends with one or
more characters that denote the end of the line. 1 Such characters are needed so that
any program reading the file can determine where one line ends and the next one
begins. Without them, all of the characters in a text file would appear on the same line
when they are read by your program (or when loaded into your favorite text editor).

1 The character, or sequence of characters, used to denote the end of a line in a text file varies between
operating systems. Fortunately, Python automatically handles these differences, which allows text
files created on any widely used operating system to be loaded by Python programs running on any
other widely used operating system.

7.4 Writing Output to a File 145

The end of line characters can be removed from a string that was read from a file
by calling the rstrip method. This method, which can be applied to any string,
removes any whitespace characters (spaces, tabs, and end of line characters) from
the right end of a string. A new copy of the string, with such characters removed (if
any were present), is returned by the method.

An updated version of the line numbering program is shown below. It uses the
rstrip method to remove the end of line characters, and as a consequence, does
not include the blank lines that were incorrectly displayed by the previous version.

7.4 Writing Output to a File

When a file is opened in write mode, a new empty file is created. If the file already
exists, then the existing file is destroyed, and any data that it contained is lost. Opening
a file that already exists in append mode will add new data to the end of it, without
modifying the existing values. If a file opened in append mode does not exist, then
a new empty file is created.

The write method can be used to store data in a file opened in either write mode
or append mode. It takes one argument, which must be a string, that will be written
to the file. Values of other types can be converted to a string by calling the str
function, or by using an f-string to format the value. Multiple values can be written
to the file by concatenating all of the items into one long string, by using an f-string to
format several values in one string, by calling the print function with appropriate
arguments, or by calling the write method multiple times.

Unlike the print function, the write method does not automatically move to
the next line after writing a value. As a result, one has to explicitly write an end of

146 7 Files and Exceptions

line marker to the file between values that are to reside on different lines. Python
uses .\n to denote the end of a line. This pair of characters, referred to as an escape
sequence, can appear in a string on its own, or .\n can be part of a longer string.

The following program stores the integers from 1 up to (and including) a number
entered by the user in a file. String concatenation and the .\n escape sequence are
used so that each number is written on its own line.

It is also possible to store values in a file using the print function. For example,
the call to write in the previous example could be replaced with the call to print
shown below. It stores num in the output file instead of displaying it on the screen,
because file=outf passes the file object that was opened for writing to the print
function’s optional file parameter.

7.5 Command Line Arguments

Computer programs are commonly executed by clicking on an icon or selecting an
item from a menu. Programs can also be started by typing a command into a terminal
or command prompt window. For example, on many operating systems, the Python
program stored in test.py can be executed by typing either test.py or python
test.py in such a window.

Starting a program from the command line provides a new opportunity to supply
input to it. Values that the program needs to perform its task can be part of the
command used to start the program by including them on the command line after the
name of the Python file. Being able to provide input as part of the command used
to start a program is particularly beneficial when writing scripts that use multiple
programs to automate a task, and for programs that are scheduled to run periodically.

Any command line arguments provided when the program was executed are stored
into a variable named argv (argument vector) that resides in the sys (system)
module. This variable holds a list, and every element in that list is a string. The

7.5 Command Line Arguments 147

first element is the name of the Python file that is being executed. The subsequent
elements are the values that followed the name of the Python file on the command
line (if any).

The following program demonstrates accessing the argument vector. It begins by
reporting the number of command line arguments provided to the program, and the
name of the Python file that is being executed. Then it displays the arguments that
appear after the name of the Python file if such values were provided. Otherwise, a
message is displayed that reports that no command line arguments were provided
beyond the name of the Python file.

Command line arguments can be used to supply any input values to the program
that can be typed on the command line, such as integers, floating-point numbers and
strings. Once the program begins executing, these values can be used just like any
other values in the program. For example, the following lines of code are a revised
version of the program that sums all of the numbers in a file. In this version, the name
of the file is provided as a command line argument instead of being read from the
keyboard.

148 7 Files and Exceptions

7.6 Exceptions

There are many things that can go wrong when a program is running: the user can
supply a non-numeric value when a numeric value was expected, they can enter a
value that causes the program to divide by 0, or they can attempt to open a file that
does not exist, among many other possibilities. All of these errors are exceptions.
By default, a Python program crashes when an exception occurs. However, these
crashes can be prevented by catching the exception and taking appropriate actions
to recover from it.

The programmer must indicate where an exception can occur in order to catch
it. They must also provide the code that will run to handle the exception when it
occurs. This is accomplished using two keywords: try and except. Code that
might cause an exception that the programmer wants to catch is placed inside a try
block. The try block is immediately followed by one or more except blocks.
When an exception occurs inside a try block, execution immediately jumps to the
appropriate except block, without running any remaining statements in the try
block.

The type of exception that an except block catches immediately follows the
except keyword. An except block that does not specify a particular type of
exception will catch any exception (that is not caught by another except block
associated with the same try block). An except block only executes when an
exception occurs. If the try block completes without raising an exception, then all
of the except blocks are skipped, and execution continues with the first line of
code following the final except block.

The programs that appeared earlier in this chapter crashed when the user provided
the name of a file that did not exist, because a FileNotFoundError exception
was raised without being caught. A try block and an except block can be used to
catch this exception and display a meaningful error message, instead of crashing the

7.6 Exceptions 149

program, as shown below. This code segment can be followed by whatever additional
code is needed to read and process the data in the file.

This code segment quits when the file provided by the user does not exist. While
that might be fine in some situations, there are other times when it is preferable to
prompt the user to re-enter the file name. The second file name entered by the user
could also cause an exception. As a result, a loop must be used that runs until the
user enters the name of a file that is opened successfully. This is demonstrated by
the following program. Notice that the try block and the except block are both
inside the while loop.

When this program runs, it begins by reading the name of a file from the user. Then
the file_opened variable is set to False, and the loop runs for the first time. Two
lines of code reside in the try block inside the loop’s body. The first attempts to open
the file specified by the user. If the file does not exist, then a FileNotFoundError
exception is raised, and execution immediately jumps to the except block, skipping
the second line in the try block. When the except block executes, it displays an
error message and reads another file name from the user.

Execution continues by returning to the top of the loop and evaluating its condition
again. The condition still evaluates to False because the file_opened variable
is still False; the line of code that sets it to True was skipped when the exception
occurred. As a result, the body of the loop executes for a second time, and the program
attempts to open the file again using the most recently entered file name. If that file

150 7 Files and Exceptions

does not exist, then the program progresses as described in the previous paragraph.
But if the file exists, the call toopen completes successfully, and execution continues
with the next line in the try block. This line sets file_opened to True. Then
the except block is skipped because no exceptions were raised while executing the
try block. Finally, the loop terminates because file_opened was set to True,
and execution continues with the rest of the program.

The concepts introduced in this section can be used to catch exceptions beyond
FileNotFoundError. Some other exceptions that you will need to catch as
you complete the exercises in this section include ValueError (which is raised
when a program fails to convert a string to an integer or floating-point number), and
IOError (which is raised when a program encounters a problem while reading or
writing a file). More generally, try and except blocks can be used to catch any
runtime errors, and respond to them in a meaningful way, instead of allowing them
to crash your programs.

7.7 Debugging

Programmers can use try and except blocks to catch and respond to runtime
errors, but accessing files, and working with exceptions, also provides new oppor-
tunities for programmers to introduce errors into their programs. Some common
syntax, runtime and logic errors that you might encounter when working with files
and exceptions are described in the sections that follow.

7.7.1 Syntax Errors

There are several syntax errors that can occur when working with exceptions. Each
try keyword must be immediately followed by a colon, and each except keyword
must either be immediately followed by a colon, or followed by the type of exception
being caught and a colon. Failing to include the colon is a syntax error, as is failing
to indent at least one line of code so that it resides inside the try or except block.
In each of these cases, Python reports a meaningful error message which correctly
identifies the source of the error and the location that needs to be corrected.

Each try block must be followed by at least one except block. 2 Failing to
include an except block is a syntax error. When the except block is omitted, an
error message is provided that indicates that an except block is missing. The error
message also identifies the location where the except block needs to be inserted.

2 It is also possible to follow a try block with a finally block, in addition to (or instead of) an
except block. The use of finally blocks is beyond the scope of this book.

7.7 Debugging 151

7.7.2 Runtime Errors

Some runtime errors occur because of actions taken by the user. These errors, such
as a FileNotFoundError, can be caught by including appropriate try and
except blocks in the program. In other cases, a runtime error occurs because the
programmer made a mistake when the program was created. Those runtime errors
need to be corrected by modifying the program.

The file mode passed to the open function must be consistent with the operations
that will subsequently be performed on the file object. Attempting to write to a file
that has been opened for reading will result in an io.UnsupportedOperation
error, as will attempting to read from a file that has been opened in write mode or
append mode. Python’s error message identifies the line in the program that attempted
to perform the invalid operation. If the operation was applied to the wrong file object,
then this will be the line that needs to be corrected. However, if the file was opened
with the wrong mode, then the programmer will need to locate the statement that
opened the file and correct it.

Files are opened by calling the open function, but files are closed by calling the
close method. This asymmetry can result in programmers inadvertently attempting
to close a file by calling the close function instead of the method. Doing so will
result in a NameError because Python does not have a close function. The error
message reported by Python identifies the line that failed to properly close the file.
This error is corrected by applying the close method to the file object, instead of
calling the close function.

Mistyping the name of an exception at the top of an except block is also a
runtime error. Such an error can go undetected for a long period of time, because
Python doesn’t validate except blocks’ errors until an exception is raised and a
matching except block is needed. When the exception is not valid, the program
crashes with a NameError. This error is corrected by updating the name of the
exception.

7.7.3 Logic Errors

Many programs read values from a file using a loop. Such programs normally open
the file before the loop, read one line from the file each time the loop’s body executes,
and close the file after the loop terminates. This approach works well, but there are
two common errors that can result in an infinite loop: failing to read the next line
from the file within the loop’s body, and opening the file inside the loop.

Failing to read the next line from the file within a loop’s body often causes an
infinite loop, because the loop’s condition includes the value read from the file. For
example, it is common to loop until the value read from the file is the empty string. If
the first line is read from the file before the loop begins to execute, but the next line
is not read from the file inside the loop’s body, then the program will loop infinitely
and repeatedly process the first line from the file. This error is corrected by ensuring
that a line is read from the file each time the loop’s body executes.

152 7 Files and Exceptions

Opening the file inside the loop’s body can cause an infinite loop because reading
begins at the top of the file each time it is opened. As a result, while a line is read
from the file each time the loop body executes, it is always the first line in the
file. This error is corrected by ensuring that the file is opened before the loop, not
inside it.

Using an except block without specifying what type of exception will be caught
is a convenient way to catch and respond to any error that occurs within a try block.
While this may be a reasonable approach when there is a try block that is expected
to raise several exceptions that all need to be handled in the same way, it can also
obscure errors in the program that need to be corrected. For example, such anexcept
block will catch the NameError that occurs when a programmer mistypes the name
of a variable, method or function, instead of crashing the program. Consequently,
no error message is displayed to make the programmer aware of the problem, or
provide the information needed to correct it. Similar problems arise for errors such
as inadvertently providing incompatible operand types to an operator and list indices
that are out of range. As a result, except blocks that do not catch a specific type
of error should be used cautiously. In most circumstances, it is preferable to only
catch the particular exceptions that are expected to occur. That way, any unexpected
runtime errors are reported, along with the information needed to correct them.

7.8 Exercises

Many of the exercises in this chapter require you to read data from a file. In some
cases, any text file can be used as input. In other cases, appropriate input files can be
created easily in your favorite text editor. There are also some exercises that require
specific data sets, such as a list of words, names or chemical elements. These data
sets can be downloaded from the author’s website:

http://www.cpsc.ucalgary.ca/~bdstephe/PythonWorkbook

Exercise 170: Display the Head of a File
(Solved, 40 Lines)

Unix-based operating systems usually include a tool named head. It displays the first
10 lines of a file whose name is provided as a command line argument. Write a Python
program that provides the same behavior. Display an appropriate error message if the
file requested by the user does not exist, or if the command line argument is omitted.

http://www.cpsc.ucalgary.ca/~bdstephe/PythonWorkbook
http://www.cpsc.ucalgary.ca/~bdstephe/PythonWorkbook
http://www.cpsc.ucalgary.ca/~bdstephe/PythonWorkbook
http://www.cpsc.ucalgary.ca/~bdstephe/PythonWorkbook
http://www.cpsc.ucalgary.ca/~bdstephe/PythonWorkbook
http://www.cpsc.ucalgary.ca/~bdstephe/PythonWorkbook
http://www.cpsc.ucalgary.ca/~bdstephe/PythonWorkbook

7.8 Exercises 153

Exercise 171: Display the Tail of a File
(Solved, 37 Lines)

Unix-based operating systems also typically include a tool named tail. It displays
the last 10 lines of a file whose name is provided as a command line argument.
Write a Python program that provides the same behavior. Display an appropriate
error message if the file requested by the user does not exist, or if the command line
argument is omitted.

There are several different approaches that can be taken to solve this problem.
One option is to load the entire contents of the file into a list and then display its
last 10 elements. Another option is to read the contents of the file twice, once to
count the lines, and a second time to display its last 10 lines. However, both of these
solutions are undesirable when working with large files. Another solution exists that
only requires you to read the file once, and only requires you to store 10 lines from
the file at one time. For an added challenge, develop such a solution.

Exercise 172: Concatenate Multiple Files
(Solved, 28 Lines)

Unix-based operating systems typically include a tool named cat, which is short for
concatenate. Its purpose is to display the concatenation of one or more files whose
names are provided as command line arguments. The files are displayed in the same
order that they appear on the command line.

Create a Python program that performs this task. It should generate an appropriate
error message for any file that cannot be displayed, and then proceed to the next file.
An appropriate error message should also be displayed if your program is started
without any command line arguments.

Exercise 173: Number the Lines in a File
(23 Lines)

Create a program that reads lines from a file, adds line numbers to them, and then
stores the numbered lines into a new file. The name of the input file will be read from
the user, as will the name of the new file that your program will create. Each line in
the output file should begin with the line number, followed by a colon and a space,
followed by the line from the input file.

154 7 Files and Exceptions

Exercise 174: Find the Longest Word in a File
(39 Lines)

In this exercise, you will create a Python program that identifies the longest word(s)
in a file. Your program should output an appropriate message that includes the length
of the longest word, along with all of the words of that length that occurred in the file.
Treat any group of non-white space characters as a word, even if it includes digits or
punctuation marks.

Exercise 175: Letter Frequencies
(43 Lines)

Frequency analysis can be used to help break some simple forms of encryption. In
the simplest case, this technique examines the encrypted text to determine which
characters are most common. Then it tries to map the most commonly occurring
letters in English, such as E and T, to the most commonly occurring characters in
the encrypted text.

Write a program that initiates this process by determining and displaying the
frequencies of all of the letters in a file. Ignore spaces, punctuation marks, and digits
as you perform this analysis. Your program should be case insensitive, treating the
uppercase and lowercase version of each letter as equivalent. The user will provide
the name of the file to analyze as a command line argument. Display a meaningful
error message if the user provides the wrong number of command line arguments,
or if your program is unable to open the file indicated by the user.

Exercise 176: Most Frequently Occurring Word
(37 Lines)

Write a program that displays the word (or words) that occur most frequently in a
file. Your program should begin by reading the name of the file from the user. Then
it should process every line in the file. Each line will need to be split into words, and
any leading or trailing punctuation marks will need to be removed from each word.
Your program should also ignore capitalization when counting how many times each
word occurs.

Hint: You will probably find your solution to Exercise 130 helpful when com-
pleting this task.

7.8 Exercises 155

Exercise 177: Sum a Collection of Numbers
(Solved, 28 Lines)

Create a program that sums all of the numbers entered by the user while ignoring any
non-numeric input. Your program should display the current sum after each number
is entered. If a non-numeric value is entered, then an appropriate message should
be displayed before your program goes on and reads additional numbers. Exit the
program when the user enters a blank line. Ensure that your program works correctly
for both integers and floating-point numbers.

Hint: This exercise requires you to use exceptions without using files.

Exercise 178: Both Letter Grades and Grade Points
(106 Lines)

Write a program that converts from letter grades to grade points and vice versa. Your
program should allow the user to convert multiple values, with one value entered
on each line. Begin by attempting to convert each value entered by the user from a
number of grade points to a letter grade. If an exception occurs during this process,
then your program should attempt to convert the value from a letter grade to a number
of grade points. If both conversions fail, then your program should output a message
indicating that the supplied input is invalid. Design your program so that it continues
performing conversions (or reporting errors) until the user enters a blank line. Your
solutions to Exercises 57 and 58 may be helpful when completing this exercise.

Exercise 179: Remove Comments
(Solved, 53 Lines)

Python uses the # character to mark the beginning of a comment. The comment
continues from the # character to the end of the line containing it. There is no
mechanism for ending a comment before the end of a line.

In this exercise, you will create a program that removes all of the comments from a
Python source file. Check each line in the file to determine if a # character is present.
If it is, then your program should remove all of the characters from the # character
to the end of the line. (Ignore the possibility that the comment character could occur
inside of a string). Save the modified file using a new name. Both the name of the
input file and the name of the output file should be read from the user. Ensure that an
appropriate error message is displayed if a problem is encountered while accessing
either of the files.

156 7 Files and Exceptions

Exercise 180: Four Word Random Password
(Solved, 47 Lines)

Generating a password by selecting random characters usually results in one that is
relatively secure, but it also tends to create a password that is difficult to memorize. As
an alternative, some systems construct a password by taking several English words
and concatenating them. Such a password is normally easier to memorize while also
being relatively secure.

Write a program that reads a file containing a list of words, randomly selects four of
them, and concatenates them to produce a password. When producing the password,
ensure that each word selected is between 3 and 7 characters so that the resulting
password is between 12 and 28 characters. Capitalize each word in the password so
that the user can easily see where one word ends and the next one begins. Finally,
your program should display the password for the user.

The advantages and disadvantages of passwords constructed by selecting four
words have been extensively analyzed, thanks (at least in part) to an xkcd
comic about password strength which used the words correct, horse, battery
and staple. Entering those four words into your favorite search engine should
turn up the comic and numerous websites discussing the ideas presented in it.

Exercise 181: Weird Words
(67 Lines)

Students learning to spell in English are sometimes taught the rhyme “I before E
except after C”. This rule of thumb advises that when an I and an E are adjacent
in a word, the I will precede the E, unless they are immediately preceded by a C.
When preceded by a C, the E will appear ahead of the I. This advice holds true for
words without an immediately preceding C such as believe, chief, fierce and friend,
and is similarly true for words with an immediately preceding C such as ceiling and
receipt. However, there are exceptions to this rule, such as weird.

Create a program that processes a file containing lines of text. Each line in the file
may contain many words (or no words at all). Any words that do not contain an E
adjacent to an I should be ignored. Words that contain an adjacent E and I (in either
order) should be examined to determine whether or not they follow the “I before
E except after C” rule. Construct and report two lists: One that contains all of the
words that follow the rule, and one that contains all of the words that violate the rule.
Neither of your lists should contain any repeated values. Report the lengths of the
lists at the end of your program so that one can easily determine what proportion of
the words in the file respect the “I before E except after C” rule.

7.8 Exercises 157

There are some words that both follow and violate this rule. For example,
deified follows the rule because the I is before the E after the F, but it also
violates the rule because the E is before the I after the D. This contradiction
is not unique to deified. Additional examples of words that both follow and
violate the rule include reified, veinier and weightier, among others.

Exercise 182: What’s That Element Again?
(59 Lines)

Write a program that reads a file containing information about chemical elements
and stores the information it contains in one or more appropriate data structures.
Then your program should read and process input from the user. If the user enters
an integer, then your program should display the symbol and name of the chemical
element with the number of protons entered. If the user enters a non-integer value,
then your program should display the number of protons for the chemical element
with that name or symbol. Your program should display an appropriate error message
if no chemical element exists for the name, symbol or number of protons entered.
Continue to read input from the user until a blank line is entered.

Exercise 183: A Book with No E...
(Solved, 50 Lines)

The novel “Gadsby” is over 50,000 words in length. While 50,000 words is not nor-
mally remarkable for a novel, it is in this case because none of the words in the book
use the letter E. This is particularly noteworthy when one considers that E is the most
common letter in English.

Write a program that reads a list of words from a file and determines what propor-
tion of the words use each letter of the alphabet. Display this result for all 26 letters,
and include an additional message that identifies the letter that is used in the smallest
proportion of the words. Your program should ignore any punctuation marks that are
present in the file, and it should treat uppercase and lowercase letters as equivalent.

A lipogram is a written work that does not use a particular letter (or group of
letters). The letter that is avoided is often a common vowel, though it does not
have to be. For example, The Raven by Edgar Allan Poe is a poem of more
than 1,000 words that does not use the letter Z, and as such, is a lipogram.
“La Disparition” is another example of a lipogrammatic work. Both the orig-
inal novel (written in French), and its English translation, “A Void”, occupy
approximately 300 pages without using the letter E, other than in the author’s
name.

158 7 Files and Exceptions

Exercise 184: Names That Reached Number One
(Solved, 54 Lines)

The baby names data set consists of over 200 files. Each file contains a list of 100
names, along with the number of times each name was used. Entries in the files are
ordered from most frequently to least frequently used. There are two files for each
year: one containing names used for girls, and the other containing names used for
boys. The data set includes files for every year from 1900 to 2012.

Write a program that reads every file in the data set and identifies all of the names
that were most popular in at least one year. Your program should output two lists:
one containing the most popular names for boys, and the other containing the most
popular names for girls. Neither of your lists should include any repeated values.

Exercise 185: Gender-Neutral Names
(56 Lines)

Some names, like Ben, Jonathan and Andrew, are normally only used for boys, while
other names, like Esther, Rebecca and Flora, are normally only used for girls. Other
names, like Chris, Ryan and Alex, are commonly used for both boys and girls.

Write a program that determines and displays all of the baby names that were
used for both girls and boys in a year specified by the user. Your program should
display an appropriate message if there were no gender-neutral names in the selected
year. Display an appropriate error message if you do not have data for the year
requested by the user. Additional details about the baby names data set are included
in Exercise 184.

Exercise 186: Most Used Names in a Time Period
(76 Lines)

Write a program that uses the baby names data set, described in Exercise 184, to
determine which names were used most often within a time period. Have the user
supply the first and last years of the range to analyze. Display the girl’s name and
the boy’s name given to the most children during the indicated years.

Exercise 187: Distinct Names
(41 Lines)

In this exercise, you will create a program that reads every file in the baby names
data set described in Exercise 184. As your program reads the files, it should keep
track of every distinct name used for a boy and every distinct name used for a girl.
Then your program should output each of these lists of names. Neither of the lists
should contain any repeated values.

7.8 Exercises 159

Exercise 188: Spell Checker
(Solved, 61 Lines)

A spell checker can be a helpful tool for people who struggle to spell words correctly.
In this exercise, you will write a program that reads a file and displays all of the words
in it that are misspelled. Misspelled words will be identified by checking each word
in the file against a list of known words. Any words in the user’s file that do not
appear in the list of known words will be reported as spelling mistakes.

The user will provide the name of the file to check for spelling mistakes as a
command line argument. Your program should display an appropriate error message
if the command line argument is missing. An error message should also be displayed
if your program is unable to open the user’s file. Use your solution to Exercise 130
when creating your solution to this exercise, so that words followed by a comma,
period or other punctuation mark are not reported as spelling mistakes. Ignore the
capitalization of the words when checking their spelling.

Hint: While you could load the words data set into a list, determining whether
or not a string is present in a long list is quite slow. It is much faster to check
if a key is present in a dictionary, or if a value is present in a set. If you use a
dictionary, the words will be the keys. The values can be the integer 0 (or any
other value) because the values will never be used.

Exercise 189: Repeated Words
(61 Lines)

Spelling mistakes are only one of many different kinds of errors that might appear in
a written work. Another error that is common for some writers is a repeated word. For
example, an author might inadvertently duplicate a word, as shown in the following
sentence:

At least one value must be entered
entered in order to compute the average.

Some word processors will detect and report this error when a spelling or grammar
check is performed.

In this exercise, you will write a program that detects repeated words in a text file.
When a repeated word is found, your program should display a message that contains
the line number and the repeated word. Ensure that your program correctly handles
the case where the same word appears at the end of one line and the beginning of the
following line, as shown in the previous example. The name of the file to examine will
be provided as the program’s only command line argument. Display an appropriate
error message if the user fails to provide a command line argument, or if an error
occurs while processing the file.

160 7 Files and Exceptions

Exercise 190: Redacting Text in a File
(Solved, 52 Lines)

Sensitive information is often removed, or redacted, from documents before they
are released to the public. When the documents are released, it is common for the
redacted text to be replaced with black bars.

In this exercise, you will write a program that redacts all occurrences of sensitive
words in a text file by replacing them with asterisks. Your program should redact
sensitive words wherever they occur, even if they occur in the middle of another
word. The list of sensitive words will be provided in a separate text file. Save the
redacted version of the original text in a new file. The names of the original text file,
sensitive words file, and redacted file will all be provided by the user.

You may find the replace method for strings helpful when completing this
exercise. Information about thereplace method can be found on the Internet.

For an added challenge, extend your program so that it redacts words in a case
insensitive manner. For example, if exam appears in the list of sensitive words, then
your program should redact exam, Exam, ExaM and EXAM, among other possible
capitalizations.

Exercise 191: Missing Comments
(Solved, 49 Lines)

When one writes a function, it is generally a good idea to include a comment that
outlines the function’s purpose, its parameters and its return value. However, some-
times comments are forgotten, or left out by well-intentioned programmers that plan
to write them later, but never get around to it.

Create a Python program that reads one or more Python source files, and iden-
tifies functions that are not immediately preceded by a comment. For the purposes
of this exercise, assume that any line that begins with def, followed by a space, is
the beginning of a function definition. Assume that the comment character, #, will
be the first character on the line preceding def when the function has a comment.
Display the names of all of the functions that are missing comments, along with the
file name and line number where the function definition is located.

The user will provide the names of one or more Python files to analyze as com-
mand line arguments. An appropriate error message should be displayed for any
files that do not exist or cannot be opened. Then your program should process the
remaining files.

7.8 Exercises 161

Exercise 192: Display a Spreadsheet
(71 Lines)

Some text files store multiple values on one line. When this occurs, it is necessary to
denote where one value ends, and the next one begins. Commas are commonly used
for this purpose. When they are, the file is referred to as a comma separated value
(CSV) file.

CSV files are easily read and written by Python programs. There are also many
spreadsheet packages that can import and export data in this format. As a result, using
CSV files allows Python programs to output results that can be further analyzed or
graphed using a spreadsheet package, and also allows data stored in a spreadsheet to
be exported for further analysis or manipulation by a Python program.

Write a program that reads a CSV file representing a spreadsheet and displays
it on the screen. The widths of the columns should be determined from the values
that are read, with each column being wide enough to hold the longest value in it.
Numeric values should be right aligned within each column. Non-numeric values
should be left aligned. Leave two spaces between adjacent columns so that it is clear
where one value ends, and the next one begins. Your program can either read the
name of the file from the keyboard, or have it provided as a command line argument.

Exercise 193: Percentage Grades to Letter Grades
(Solved, 71 Lines)

At a particular academic institution, students are awarded percentage grades on all
of the pieces of work that they complete during the term. At the end of the term,
these grades are combined to compute each student’s percentage grade for the course
(rounded to the closest integer), and then that percentage grade is converted to a letter
grade using the following table.

Percentage Letter grade
90–100 A
80–89 B
70–79 C
60–69 D
0–59 F

Create a program that reads a collection of percentage grades from a file and converts
each of them to a letter grade. Each percentage grade will appear on its own line in
the file. The new file, which will replace the original, will have lines that consist of
the original percentage grade, followed by a comma, followed by the corresponding
letter grade. The name of the file to update will be provided as a command line
argument to the program. Report an appropriate error message and exit the program
if the command line argument is omitted, or if the file cannot be opened. The program

162 7 Files and Exceptions

should also display an error message and exit (without updating any of the values in
the file) if any of the lines in the file are not an integer between 0 and 100.

Exercise 194: Consistent Line Lengths
(45 Lines)

While 80 characters is a common width for a terminal window, some terminals are
narrower or wider. This can present challenges when displaying documents contain-
ing paragraphs of text. The lines might be too long and wrap, making them difficult
to read, or they might be too short and fail to make good use of the available space.

Write a program that opens a file and displays it so that each line is as full as
possible. If you read a line that is too long, then your program should break it up into
words and add them to the current line until it is full. Then your program should start
a new line and display the remaining words. Similarly, if you read a line that is too
short, then you will need to use words from the next line of the file to finish filling
the current line of output. For example, consider a file containing the following lines
from “Alice’s Adventures in Wonderland”:

Alice was
beginning to get very tired of sitting by her
sister
on the bank, and of having nothing to do: once
or twice she had peeped into the book her sister
was reading, but it had
no
pictures or conversations in it, "and what is
the use of a book," thought Alice, "without
pictures or conversations?"

When formatted for a line length of 50 characters, it should be displayed as:

Alice was beginning to get very tired of sitting
by her sister on the bank, and of having nothing
to do: once or twice she had peeped into the book
her sister was reading, but it had no pictures or
conversations in it, "and what is the use of a
book," thought Alice, "without pictures or
conversations?"

Ensure that your program works correctly for files containing multiple paragraphs
of text. You can detect the end of one paragraph and the beginning of the next by
looking for lines that are empty once the end of line marker has been removed.

7.8 Exercises 163

Hint: Use a constant to represent the maximum line length. This will make it
easier to update the program when a different line length is needed.

Exercise 195: Words with Six Vowels in Order
(56 Lines)

There is at least one word in the English language that contains every vowel (A,
E, I, O, U, and Y) exactly once and in order. Write a program that searches a file
containing a list of words and displays all of the words that meet this constraint. The
user will provide the name of the file that will be searched. Display an appropriate
error message and exit the program if the user provides an invalid file name, or if
something else goes wrong while searching the file.

8Recursion

Many aspects of functions were explored in Chap. 4, including functions that call
other functions. A closely related topic that was not considered at that time is whether
or not a function can call itself. It turns out that this is, in fact, possible, and that it is
a powerful technique for solving some problems.

A definition that describes something in terms of itself is recursive. To be use-
ful, a recursive definition must describe whatever is being defined using a different
(typically, a smaller or simpler) version of itself. A definition that defines something
using the same version of itself, while recursive, is not particularly useful because
the definition is circular. A useful recursive definition must make progress toward a
version of the problem with a known solution.

Any function that calls itself is recursive because the function’s body (its defini-
tion) includes a call to the function that is being defined. In order to reach a solution, a
recursive function must have at least one case where it is able to produce the required
result without calling itself. This is the base case. Cases where the function calls
itself are recursive cases. These concepts will be explored in the sections that follow
by considering three examples.

8.1 Summing Integers

Consider the problem of computing the sum of all the integers from 0 up to and
including some non-negative integer, n. This can be accomplished using a loop or a
formula. It can also be performed recursively. The simplest case is when n is 0. In
this case the answer is known to be 0, and that answer can be returned without using
another version of the problem. As a result, this is the base case.

© Springer Nature Switzerland AG 2025
B. Stephenson, The Python Workbook, Texts in Computer Science,
https://doi.org/10.1007/978-3-031-84560-4_8

165

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_8&domain=pdf
https://doi.org/10.1007/978-3-031-84560-4_8
https://doi.org/10.1007/978-3-031-84560-4_8
https://doi.org/10.1007/978-3-031-84560-4_8
https://doi.org/10.1007/978-3-031-84560-4_8
https://doi.org/10.1007/978-3-031-84560-4_8
https://doi.org/10.1007/978-3-031-84560-4_8
https://doi.org/10.1007/978-3-031-84560-4_8
https://doi.org/10.1007/978-3-031-84560-4_8
https://doi.org/10.1007/978-3-031-84560-4_8
https://doi.org/10.1007/978-3-031-84560-4_8
https://doi.org/10.1007/978-3-031-84560-4_8

166 8 Recursion

For any positive integer, n, the sum of the integers from 0 up to and including n
can be computed by adding n to the sum of the integers from 0 up to and including
n - 1. This description is recursive because the sum of the integers from 0 up to
and including n is expressed as a smaller version of the same problem (summing
the integers from 0 up to and including n - 1), plus a small amount of additional
work (adding n to that sum). Each time this recursive definition is applied, it makes
progress toward the base case (when n is 0). When the base case is reached, no further
recursion is performed. This allows the calculation to complete and the result to be
returned.

The following program computes the sum of the integers from 0 up to and including
a non-negative integer entered by the user. It uses the recursive approach described in
the previous paragraphs. An if statement is used to decide whether to execute the base
case or the recursive case. When the base case executes, 0 is returned immediately,
without making a recursive call. When the recursive case executes, the function is
called again with a smaller argument (n - 1). Once the recursive call returns, n is
added to the returned value. This successfully computes the total of the values from
0 up to and including n. Then this total is returned as the function’s result.

Consider what happens if the user enters 2 when the program is run. This value is
read from the keyboard and converted into an integer. Then sum_to is called with
2 as its argument. The if statement’s condition evaluates to False, so its body
is skipped, and the body of the else executes. As it executes, sum_to is called
recursively with its argument equal to n - 1, which is 1. This recursive call must
complete before the instance of sum_to where n is equal to 2 can compute and
return its result.

Executing the recursive call to sum_to, where n is equal to 1, results in another
recursive call to sum_to where n is equal to 0. Once that recursive call begins to
execute, there are three instances of sum_to executing with argument values 2, 1
and 0. The instance where n is equal to 2 is waiting for the instance where n is equal
to 1 to complete before it can return its result, and the instance where n is equal to 1

8.2 Fibonacci Numbers 167

is waiting for the instance where n is equal to 0 to complete before it can return its
result. While the same function was called each time, each instance of the function
is entirely separate from all of the other instances.

The base case executes when sum_to is called with n equal to 0. This causes 0
to be returned immediately, and the instance where n is 0 ceases to exist. Then the
instance of sum_to where n is equal to 1 progresses by adding 1 to the 0 returned
by the recursive call. The total, which is 1, is returned by the instance where n is
equal to 1, and that instance ceases to exist. Execution continues with the instance
of sum_to where n is equal to 2. It adds n, which is 2, to the 1 returned by the
recursive call, and 3 is returned and stored in total. Finally, the total is displayed,
and the program terminates.

8.2 Fibonacci Numbers

The Fibonacci numbers are a sequence of integers that begin with 0 and 1. Each
subsequent number in the sequence is the sum of its two immediate predecessors. As
a result, the first 10 numbers in the Fibonacci sequence are 0, 1, 1, 2, 3, 5, 8, 13, 21
and 34. Numbers in the Fibonacci sequence are commonly denoted by.Fn , where. n is
a non-negative integer identifying the number’s index within the sequence (starting
from 0).

Numbers in the Fibonacci sequence, beyond the first two, can be computed using
the formula.Fn = Fn−1+Fn−2. This definition is recursive because a larger Fibonacci
number is computed using two smaller Fibonacci numbers. The first two numbers
in the sequence, .F0 and .F1, are the base cases because they have known values that
are not computed recursively.

A program that implements the recursive formula for computing Fibonacci num-
bers is shown below. It computes and displays the value of .Fn for some value of . n
entered by the user.

168 8 Recursion

This recursive function for computing Fibonacci numbers is compact, but it is
slow, even when working with fairly modest values. While computing fib(35)
will return quickly on a modern machine, computing fib(70) will take months to
complete. As a result, larger Fibonacci numbers are normally computed using a loop
or a formula.

Based on the performance of the Fibonacci numbers program, you might be
tempted to conclude that recursive solutions are too slow to be useful. While that is
true in this particular situation, it is not true in general. The previous program that
summed integers ran quickly, even for larger values, and there are some problems that
have very efficient recursive algorithms, such as Euclid’s algorithm for computing
the greatest common divisor of two integers, which is described in Exercise 197.

Figure 8.1 illustrates the recursive calls made when computing.F4 and.F5, as well
as the recursive calls made to evaluate sum_to(4) and sum_to(5). Comparing
the function calls made to compute these results will help you better understand why
these programs behave differently as the input value increases.

When the argument passed to sum_to increases from 4 to 5, the number of
function calls also increases from 4 to 5. More generally, when the argument passed
to sum_to increases by 1 the number of function calls also increases by 1. This
is referred to as linear growth because the number of recursive calls is directly
proportional to the value of the argument provided when the function is first called.

In contrast, when the argument passed to fib increases from 4 to 5, the number
of function calls increases from 9 to 15. More generally, when the position of the
Fibonacci number being computed increases by 1, the number of recursive calls
(nearly) doubles. This is referred to as exponential growth. Exponential growth makes
it impossible (in any practical sense) to calculate the result for large values because
repeatedly doubling the time needed for the computation quickly results in a running
time that is simply too long to be useful.

8.3 Counting Characters

Recursion can be used to solve any problem that can be expressed in terms of itself.
It is not restricted to problems that operate on integers. For example, consider the
problem of counting the number of occurrences of a particular character, ch, within
a string, s. A recursive function for solving this problem can be written that takes
s and ch as arguments, and returns the number of times that ch occurs in s as its
result.

The base case for this problem is s being the empty string. Since an empty string
does not contain any characters, it must contain 0 occurrences of ch. As a result, the
function can return 0 without making a recursive call.

The number of occurrences of ch in a longer string can be determined in the
following recursive manner. To help simplify the description of the recursive case,
the tail of s will be defined to be all of the characters in s, except for the first character.
The tail of a string containing only one character is the empty string.

8.3 Counting Characters 169

Fig. 8.1 A Comparison of the Function Calls for fib and sum_to

If the first character in s is ch, then the number of occurrences of ch in s is
one plus the number of occurrences of ch in the tail of s. Otherwise, the number
of occurrences of ch in s is the number of occurrences of ch in the tail of s. This
definition makes progress toward the base case (when s is the empty string) because
the tail of s is always shorter than s. A program that implements this recursive
algorithm is shown below.

170 8 Recursion

When this program executes, it begins by reading the string and the character from
the user. Then the count function is called for the first time. If s is not the empty
string, then the tail of s is computed, and the first character in s is compared to ch.
If those characters match, then one is added to the result computed recursively for
the tail of s. Otherwise, the number of occurrences of ch in the tail of s is computed
recursively and returned without modification. Each recursive call is performed on
a shorter string until the base case is reached, and 0 is returned. When this occurs,
all of the earlier recursive calls complete, and the number of occurrences of ch in s
is returned by the first call to count.

8.4 Debugging

Syntax, runtime, and logic errors can all occur in programs that employ recursion.
Examples of these errors, and strategies for resolving them, are discussed in the
sections that follow.

8.4.1 Syntax Errors

A recursive function is defined in exactly the same manner as a function that does
not call itself. Its definition begins with def, followed by the name of the function,
an open parenthesis, an optional comma separated list of parameter variables, a close
parenthesis, and a colon. These elements are followed by the lines of code which
form the body of the function. Omitting any of the non-optional components of the

8.4 Debugging 171

function definition is a syntax error which will be reported by Python, as is failing
to indent the body of the function. Correcting these errors is normally relatively
straightforward because the error message identifies the location of the error.

8.4.2 Runtime Errors

A well-formed recursive function must progress toward its base case as it executes.
If the function fails to do this, it will call itself repeatedly, eventually causing the
program to crash with a RecursionError. The error message highlights the
location where the recursive calls were made, but it does not provide any information
about how to correct the error. Displaying the values of the parameter variables at
the beginning of the function’s body will show what values were provided when the
function was called. This usually reveals that one (or more) of the values is incorrect,
and allows the programmer to focus their debugging efforts on the erroneous value.

A RecursionError can also occur when a function is making progress toward
its base case, but the number of recursive calls needed to solve the problem is larger
than Python’s maximum recursion depth. On many systems, Python’s default recur-
sion limit is 1,000 calls. While this is sufficient in many situations, solving a par-
ticularly large problem can result in the limit being exceeded. The recursion limit
can be viewed by printing the result returned by sys.getrecursionlimit().
It can be raised by calling sys.setrecursionlimit() with the new limit as
its only argument. If displaying the function’s parameter variables reveals that it
was progressing toward the base case, as expected, before the RecursionError
occurred, then raising the recursion limit may resolve the error.

8.4.3 Logic Errors

Problems are solved recursively by determining how one version of a problem can
help solve another version of it. Typically, this means that a larger version of the
problem is solved by using the solution to a smaller version of the problem, plus some
additional work. This is not an intuitive way to solve problems for some (perhaps even
many) people. As a result, logic errors in recursive functions are often the result of
failing to correctly identify the relationship between the larger and smaller versions
of the problem, or the additional work that needs to be combined with the smaller
solution to solve the larger problem.

Unfortunately, there is no way to easily identify and correct the logic errors in
a recursive function. Instead, one needs to carefully consider each step that is per-
formed, the results that are calculated, and the values that are passed to each recursive
call. Displaying the values of the parameter variables at the beginning of the function
can be helpful, because it allows the programmer to identify any incorrect values that
were passed to the function. Similarly, appropriate assertions can be used to ensure
that the program crashes immediately if the function is passed a value outside of the

172 8 Recursion

expected range. It can also be helpful to identify the smallest example of an incorrect
result, so that the amount of output that needs to be analyzed is minimized.

8.5 Exercises

All of the exercises in this chapter should be solved by writing one or more recursive
functions. Each of these functions will call itself, and may also make use of any of
Python’s features that were discussed in the previous chapters.

Exercise 196: Total the Values
(Solved, 29 Lines)

Write a program that reads values from the user until a blank line is entered. Display
the total of all of the values entered by the user (or 0.0 if the first value entered was
a blank line). Complete this task using recursion. Your program may not use any
loops.

Hint: The body of your recursive function will need to read one value from the
user, and then determine whether or not to make a recursive call. Your function
does not need to take any arguments, but it will need to return a numeric result.

Exercise 197: Greatest Common Divisor
(24 Lines)

Euclid was a Greek mathematician who lived approximately 2,300 years ago. His
algorithm for computing the greatest common divisor of two positive integers, a and
b, is both efficient and recursive. It is outlined below:

If b is 0 then
Return a

Else
Set c equal to the remainder when a is divided by b
Return the greatest common divisor of b and c

Write a program that implements Euclid’s algorithm and uses it to determine the
greatest common divisor of two integers entered by the user. Test your program with
some very large integers. The result will be computed quickly, even for enormous

8.5 Exercises 173

numbers consisting of hundreds of digits, because Euclid’s algorithm is extremely
efficient.

Exercise 198: Recursive Decimal to Binary
(34 Lines)

In Exercise 90, you wrote a program that used a loop to convert a decimal number
to its binary representation. In this exercise, you will perform the same task using
recursion.

Write a recursive function that converts a non-negative decimal number to binary.
Treat 0 and 1 as base cases that return a string containing the appropriate digit. For
all other positive integers, . n, you should compute the next digit using the remainder
operator, and then make a recursive call to compute the digits of .n .// . 2. Finally, you
should concatenate the result of the recursive call (which will be a string) and the
next digit (which you will need to convert to a string), and return this string as the
result of the function.

Write a main program that uses your recursive function to convert a non-negative
integer entered by the user from decimal to binary. Your program should display an
appropriate error message if the user enters a negative value.

Exercise 199: The NATO Phonetic Alphabet
(33 Lines)

A spelling alphabet is a set of words, each of which stands for one of the 26 letters
in the alphabet. While many letters are easily misheard over a low quality or noisy
communication channel, the words used to represent the letters in a spelling alphabet
are generally chosen so that each sounds distinct and is difficult to confuse with any
other. The NATO phonetic alphabet is a widely used spelling alphabet. Each letter,
and its associated word, is shown in Table 8.1.

Write a program that reads a word from the user and then displays its phonetic
spelling. For example, if the user enters Hello, then the program should output
Hotel Echo Lima Lima Oscar. Your program should use a recursive func-
tion to perform this task. Do not use a loop anywhere in your solution. Any non-letter
characters entered by the user should be ignored.

Exercise 200: Roman Numerals
(25 Lines)

As the name implies, Roman numerals were developed in ancient Rome. Even though
the Roman empire fell, its numerals continued to be widely used in Europe until the
late Middle Ages, and its numerals are still used in limited circumstances today.

174 8 Recursion

Table 8.1 NATO phonetic alphabet

Letter Word Letter Word Letter Word

A Alpha J Juliet S Sierra

B Bravo K Kilo T Tango

C Charlie L Lima U Uniform

D Delta M Mike V Victor

E Echo N November W Whiskey

F Foxtrot O Oscar X Xray

G Golf P Papa Y Yankee

H Hotel Q Quebec Z Zulu

I India R Romeo

Roman numerals are constructed from the letters M, D, C, L, X, V and I, which
represent 1000, 500, 100, 50, 10, 5 and 1, respectively. The numerals are generally
written from largest value to smallest value. When this occurs, the value of the
number is the sum of the values of all of its numerals. However, if a smaller value
precedes a larger value, then the smaller value is subtracted from the larger value that
it immediately precedes, and that difference is added to the value of the number. 1

Create a recursive function that converts a Roman numeral to an integer. Your
function should process one or two characters at the beginning of the string, and
then call itself recursively on all of the unprocessed characters. Use an empty string,
which has the value 0, for the base case. In addition, write a main program that reads
a Roman numeral from the user and displays its value. You can assume that the value
entered by the user is valid. Your program does not need to do any error checking.

Exercise 201: Binary Search
(63 Lines)

Searching for a value in a list is a task that programs frequently perform. When the
values in the list are unsorted, linear search is commonly employed. This approach
searches for the desired value by checking each element in the list in sequence. If the
desired element is located, then the search terminates, and its presence is reported.
Otherwise, every element in the list is examined in order to conclude that the desired
element is not present.

1 Only C, X and I are used in a subtractive manner. The numeral that a C, X or I precedes must have
a value that is no more than 10 times the value being subtracted. As such, I can precede V or X,
but it cannot precede L, C, D or M. This means, for example, that 99 must be represented by XCIX
rather than by IC.

8.5 Exercises 175

When the values in a list are sorted, a more efficient approach can be employed.
Binary search begins by examining the middle element in the list. If the desired
element is less than the middle element, then all of the elements beyond the midpoint
are ignored, and the search is repeated on the elements between the beginning of the
list and its midpoint. Similarly, if the desired element is greater than the middle
element, then the elements between the beginning of the list and its midpoint are
ignored, and the search is repeated on the elements after the list’s midpoint.

Binary search is a recursive algorithm that repeatedly searches smaller and smaller
lists. The recursion terminates when the middle element is the desired value, or the
search is performed on an empty list, or the search is performed on a list of only one
element. The algorithm returns True if the desired element was located in the list.
Otherwise, False is returned.

Write a recursive function that performs a binary search on a sorted list of values.
Your function will take four parameters, which are the list of values, the smallest index
still under consideration, the largest index still under consideration, and the desired
value. Your function will return True if the desired element is located. Otherwise,
it will either return False because one of the other base cases has been reached,
or it will call itself recursively on the appropriate half of the remaining elements.
Include a main program that demonstrates that your binary search function behaves
correctly.

Exercise 202: Recursive Palindrome
(Solved, 30 Lines)

The notion of a palindrome was introduced previously in Exercise 82. In this exercise,
you will write a recursive function that determines whether or not a string is a
palindrome. The empty string is a palindrome, as is any string containing only one
character. Any longer string is a palindrome if its first and last characters match, and
if the string formed by removing the first and last characters is also a palindrome.

Write a main program that reads a string from the user and uses your recursive
function to determine whether or not it is a palindrome. Then your program should
report the result as part of a meaningful message.

Exercise 203: Exponentiation
(Solved, 53 Lines)

Exponentiation is the mathematical operation that raises one value to the power of
another. When the power value is a positive integer, exponentiation can be performed
recursively by making use of the fact that.xn = x × xn−1 and.x0 = 1. This approach
will make . n recursive calls to compute .xn .

Exponentiation can also be performed recursively using an approach known as
exponentiation by squaring. This approach makes use of the fact that. xn = (x×x)n/2

when n is a positive even integer, and.xn = x(x × x)(n−1)/2 when n is a positive odd

176 8 Recursion

integer. Exponentiation by squaring uses less than . n recursive calls to compute . xn

when . n is greater than 2. The number of recursive calls is far less than . n when . n is
large.

Create two recursive functions that implement the two approaches to exponen-
tiation that were described in the previous paragraphs. Each function will take two
parameters, . x and. n, and will return the value of .xn as its only result. Call print at
the beginning of each function’s body so that you can see how many recursive calls
are performed when each function executes. Write a main program that shows this
difference by computing .2100 using each of your functions.

Each of the functions described above can be extended to handle exponents
that are negative integers by making use of the fact that .xn = 1

x−n . Consider
using this knowledge to improve your functions.

Exercise 204: Recursive Square Root
(20 Lines)

Exercise 81 explored how iteration can be used to compute the square root of a
number. In that exercise, a better approximation of the square root was generated each
time the loop’s body executed. In this exercise, you will use the same approximation
strategy, but you will use recursion instead of a loop.

Create a square root function with two parameters. The first parameter, n, will
be the number for which the square root is being computed. The second parameter,
guess, will be the current guess for the square root. The guess parameter should have
a default value of 1.0. Do not provide a default value for the first parameter.

Your square root function will be recursive. The base case occurs when.guess2 is
within.10−12 of. n. In this case, your function should return.guess because it is close
enough to the square root of . n. Otherwise, your function should return the result of

calling itself recursively with . n as the first argument and .
guess+ n

guess
2 as the second

argument.
Write a main program that demonstrates your square root function by computing

the square root of several different values. When you call your square root function
from the main program, you should only pass one parameter to it, so that the default
value is used for .guess.

8.5 Exercises 177

Exercise 205: String Edit Distance
(Solved, 45 Lines)

The edit distance between two strings is a measure of their similarity. The smaller the
edit distance, the more similar the strings are with regard to the minimum number of
insert, delete and substitute operations needed to transform one string into the other.

Consider the strings looked and booklet. The first string can be transformed
into the second string with the following operations: Substitute the l with a b,
substitute the d with a t, and insert an l between the k and the e. This is the smallest
number of operations that can be performed to transform looked into booklet.
As a result, the edit distance is 3.

Use the following algorithm to write a recursive function that computes the edit
distance between two strings, . s and . t :

If the length of s is 0 then
Return the length of t

Else if the length of t is 0 then
Return the length of s

Else
Set cost to 0
If the last character in s does not equal the last character in t then

Set cost to 1
Set d1 equal to the edit distance between all characters except the last one
in s, and all characters in t , plus 1

Set d2 equal to the edit distance between all characters in s, and all
characters except the last one in t , plus 1

Set d3 equal to the edit distance between all characters except the last one
in s, and all characters except the last one in t , plus cost

Return the minimum of d1, d2 and d3

Use your recursive function to write a program that reads two strings from the user
and displays the edit distance between them.

Exercise 206: Possible Change
(41 Lines)

Create a program that determines whether or not it is possible to construct a particular
monetary total using a specific number of coins. For example, it is possible to have
a total of $1.00 using four coins if they are all quarters. However, there is no way to
have a total of $1.00 using 5 coins. Yet it is possible to have a total of $1.00 using
6 coins by using 3 quarters, 2 dimes and a nickel. Similarly, a total of $1.25 can be
formed using 5 coins or 8 coins, but a total of $1.25 cannot be formed using 4, 6 or
7 coins.

Your program should read both the dollar amount and the number of coins from
the user. Then it should display a clear message indicating whether or not the entered

178 8 Recursion

dollar amount can be formed using the number of coins indicated. Assume the exis-
tence of quarters, dimes, nickels and pennies when completing this problem. Your
solution must use recursion. It cannot contain any loops.

Exercise 207: Spelling with Element Symbols
(67 Lines)

Each chemical element has a standard symbol that is one, two or three letters long.
One game that some people like to play is to determine whether or not a word can
be spelled using only element symbols. For example, silicon can be spelled using
the symbols Si, Li, C, O and N. However, hydrogen cannot be spelled with any
combination of element symbols.

Write a recursive function that determines whether or not a word can be spelled
using only element symbols. Your function will require two parameters: the word that
you are trying to spell and a list of the symbols that can be used. It will return a string
containing the symbols used to achieve the spelling as its result, or an empty string
if no spelling exists. Capitalization should be ignored when your function searches
for a spelling.

Create a program that uses your function to find and display all of the element
names that can be spelled using only element symbols. Display the names of the ele-
ments along with the sequences of symbols. For example, one line of your output
will be:

Silver can be spelled as SiLvEr

Your program will use the elements data set, which can be downloaded from the
author’s website. This data set includes the names and symbols of all 118 chemical
elements.

Exercise 208: Element Sequences
(Solved, 83 Lines)

Some people like to play a game that constructs a sequence of chemical elements
where each element in the sequence begins with the last letter of its predecessor.
For example, if a sequence begins with Hydrogen, then the next element must be
an element that begins with N, such as Nickel. The element following Nickel must
begin with L, such as Lithium. Each element in the sequence must be unique; repeated
values are not permitted. When played alone, the goal of the game is to construct the
longest possible sequence of elements. When played with two players, the goal is to
select an element that leaves your opponent without an option to add to the sequence.

Write a program that reads the name of an element from the user and uses a
recursive function to find the longest sequence of elements that begins with that

8.5 Exercises 179

value. Display the sequence once it has been computed. Ensure that your program
responds in a reasonable way if the user does not enter a valid element name.

Hint: It may take your program up to two minutes to find the longest sequence
for some elements. As a result, you might want to use elements like Molyb-
denum and Magnesium as your first test cases. Each has a longest sequence
that is only 8 elements long, which your program should find in a fraction of
a second.

Exercise 209: Flatten a List
(Solved, 33 Lines)

Python’s lists can contain other lists. When one list occurs inside another, the inner
list is said to be nested inside the outer list. Each of the inner lists nested within
the outer list may also contain nested lists, and those lists may contain additional
nested lists to any depth. For example, the following list includes elements that
are nested at several different depths: [1, [2, 3], [4, [5, [6, 7]]],
[[[8], 9], [10]]].

Lists that contain multiple levels of nesting can be useful when representing com-
plex relationships between values, but the nesting can also make performing some
operations on those values difficult. Flattening transforms a list that may include
multiple levels of nesting into a list that contains all of the original elements without
any nesting. For example, flattening the list in the previous paragraph results in [1,
2, 3, 4, 5, 6, 7, 8, 9, 10]. The following recursive algorithm can be
used to flatten the list stored in .data:

If data is empty then
Return the empty list

If the first element in data is a list then
Set l1 to the result of flattening the first element in data
Set l2 to the result of flattening all of the elements in data, except the first
Return the concatenation of l1 and l2

If the first element in data is not a list then
Set l1 to a list containing only the first element in data
Set l2 to the result of flattening all of the elements in data, except the first
Return the concatenation of l1 and l2

Write a function that implements the recursive flattening algorithm described
previously. Your function will take one argument, which is the list to flatten, and
it will return one result, which is the flattened list. Include a main program that
demonstrates that your function successfully flattens the list shown earlier in this
problem, as well as several others.

180 8 Recursion

Hint: Python includes a function named type which returns the type of its
only argument. Information about using this function to determine whether or
not a value is a list can be found online.

Exercise 210: Permutations of a String
(48 Lines)

A permutation of a string is a rearrangement of its characters. When each character
in a string of . n characters is unique, there are .n! permutations of the string. There
are less than .n! distinct permutations if the string contains repeated characters. The
permutations of a string, . s, can be computed using the following algorithm:

If s is the empty string then
Return a list containing only the empty string

Create an empty list, result , to store the permutations
For each index, i , in s

Set current equal to the character in s at index i
Set rest equal to s with the character at index i removed from it
Compute all permutations of rest and store them in perms
For each permutation, p, in perms

Append the concatenation of current and p to result
Return result

Create a program that reads a string from the user and uses the recursive algorithm
above to compute and display all of its permutations. It is recommended that you
test your program only with short strings (8 characters or less) because the number
of permutations becomes very large as the length of the string increases. A string of
4 characters, where each is distinct, has only 24 permutations, while a string of 8
characters, where each is distinct, has 40,320. The number of permutations rises to
20,922,789,888,000 when the string consists of 16 distinct characters.

The result generated by the algorithm provided in this exercise will include
repeated values when the input string includes repeated characters. The
repeated values can be eliminated by only appending the new permutation
to the result when it is not already present in the list, or by using a set to hold
the result instead of a list.

8.5 Exercises 181

Exercise 211: Run-Length Decoding
(33 Lines)

Run-length encoding is a simple data compression technique that can be effec-
tive when repeated values occur at adjacent positions within a list. Compression
is achieved by replacing groups of repeated values with one copy of the value, fol-
lowed by the number of times that it should be repeated. For example, the list ["A",
"A","A","A","A","A","A","A","A","A","A","A","B","B",
"B", "B", "A", "A", "A", "A", "A", "A", "B"] would be compressed
as ["A", 12, "B", 4, "A", 6, "B", 1]. Decompression is performed by
replicating each value in the list the number of times indicated.

Write a recursive function that decompresses a run-length encoded list. Your
recursive function will take a run-length compressed list as its only argument. It will
return the decompressed list as its only result. You should also create a main program
that displays a run-length encoded list, and the result of decoding it.

Exercise 212: Run-Length Encoding
(Solved, 37 Lines)

Write a recursive function that implements the run-length compression technique
described in Exercise 211. Your function will take a list or a string as its only argu-
ment. It should return the run-length compressed list as its only result. Include a main
program that reads a string from the user, compresses it, and displays the run-length
encoded result.

Hint: You may want to include a loop inside the body of your recursive function.

Part II

Solutions

9Solutions to Selected Introductory
Exercises

Solution to Exercise 1: Mailing Address

Solution to Exercise 3: Area of a Room

© Springer Nature Switzerland AG 2025
B. Stephenson, The Python Workbook, Texts in Computer Science,
https://doi.org/10.1007/978-3-031-84560-4_9

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_9&domain=pdf
https://doi.org/10.1007/978-3-031-84560-4_9
https://doi.org/10.1007/978-3-031-84560-4_9
https://doi.org/10.1007/978-3-031-84560-4_9
https://doi.org/10.1007/978-3-031-84560-4_9
https://doi.org/10.1007/978-3-031-84560-4_9
https://doi.org/10.1007/978-3-031-84560-4_9
https://doi.org/10.1007/978-3-031-84560-4_9
https://doi.org/10.1007/978-3-031-84560-4_9
https://doi.org/10.1007/978-3-031-84560-4_9
https://doi.org/10.1007/978-3-031-84560-4_9
https://doi.org/10.1007/978-3-031-84560-4_9

186 9 Solutions to Selected Introductory Exercises

Solution to Exercise 4: Area of a Field

Solution to Exercise 5: Bottle Deposits

Solution to Exercise 6: Tax and Tip

9 Solutions to Selected Introductory Exercises 187

Solution to Exercise 7: Sum of the First . n Positive Integers

Solution to Exercise 10: Pythagorean Theorem

188 9 Solutions to Selected Introductory Exercises

Solution to Exercise 11: Arithmetic

Solution to Exercise 12: Pizza Planning

9 Solutions to Selected Introductory Exercises 189

Solution to Exercise 15: Making Change

190 9 Solutions to Selected Introductory Exercises

Solution to Exercise 16: Height Units

Solution to Exercise 19: Heat Capacity

9 Solutions to Selected Introductory Exercises 191

Solution to Exercise 21: Free Fall

Solution to Exercise 25: Area of the Regular Polygon

192 9 Solutions to Selected Introductory Exercises

Solution to Exercise 27: Units of the Time (Again)

Solution to Exercise 31: Wind chill

9 Solutions to Selected Introductory Exercises 193

Solution to Exercise 35: Sort 3 Integers

Solution to Exercise 36: Day Old Bread

10Solutions to Selected Decision-Making
Exercises

Solution to Exercise 38: Even or Odd?

Solution to Exercise 40: Vowel or Consonant

© Springer Nature Switzerland AG 2025
B. Stephenson, The Python Workbook, Texts in Computer Science,
https://doi.org/10.1007/978-3-031-84560-4_10

195

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_10&domain=pdf
https://doi.org/10.1007/978-3-031-84560-4_10
https://doi.org/10.1007/978-3-031-84560-4_10
https://doi.org/10.1007/978-3-031-84560-4_10
https://doi.org/10.1007/978-3-031-84560-4_10
https://doi.org/10.1007/978-3-031-84560-4_10
https://doi.org/10.1007/978-3-031-84560-4_10
https://doi.org/10.1007/978-3-031-84560-4_10
https://doi.org/10.1007/978-3-031-84560-4_10
https://doi.org/10.1007/978-3-031-84560-4_10
https://doi.org/10.1007/978-3-031-84560-4_10
https://doi.org/10.1007/978-3-031-84560-4_10

196 10 Solutions to Selected Decision-Making Exercises

Solution to Exercise 41: Name that Shape

10 Solutions to Selected Decision-Making Exercises 197

Solution to Exercise 42: Month Name to Number of Days

Solution to Exercise 44: Classifying Triangles

198 10 Solutions to Selected Decision-Making Exercises

Solution to Exercise 45: Note to Frequency

10 Solutions to Selected Decision-Making Exercises 199

Solution to Exercise 46: Frequency to Note

200 10 Solutions to Selected Decision-Making Exercises

Solution to Exercise 49: Birthstones

10 Solutions to Selected Decision-Making Exercises 201

Solution to Exercise 51: Season from Month and Day

202 10 Solutions to Selected Decision-Making Exercises

Solution to Exercise 53: Chinese Zodiac

Solution to Exercise 55: Penalties for Speeding

10 Solutions to Selected Decision-Making Exercises 203

Solution to Exercise 57: Letter Grade to Grade Points

204 10 Solutions to Selected Decision-Making Exercises

Solution to Exercise 59: Assessing Employees

10 Solutions to Selected Decision-Making Exercises 205

Solution to Exercise 63: Is it a Leap Year?

206 10 Solutions to Selected Decision-Making Exercises

Solution to Exercise 66: Is a License Plate Valid?

Solution to Exercise 67: Roulette Payouts

10 Solutions to Selected Decision-Making Exercises 207

11Solutions to Selected Repetition
Exercises

Solution to Exercise 72: No More Pennies

© Springer Nature Switzerland AG 2025
B. Stephenson, The Python Workbook, Texts in Computer Science,
https://doi.org/10.1007/978-3-031-84560-4_11

209

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_11&domain=pdf
https://doi.org/10.1007/978-3-031-84560-4_11
https://doi.org/10.1007/978-3-031-84560-4_11
https://doi.org/10.1007/978-3-031-84560-4_11
https://doi.org/10.1007/978-3-031-84560-4_11
https://doi.org/10.1007/978-3-031-84560-4_11
https://doi.org/10.1007/978-3-031-84560-4_11
https://doi.org/10.1007/978-3-031-84560-4_11
https://doi.org/10.1007/978-3-031-84560-4_11
https://doi.org/10.1007/978-3-031-84560-4_11
https://doi.org/10.1007/978-3-031-84560-4_11
https://doi.org/10.1007/978-3-031-84560-4_11

210 11 Solutions to Selected Repetition Exercises

Solution to Exercise 73: Compute the Perimeter of a Polygon

11 Solutions to Selected Repetition Exercises 211

Solution to Exercise 75: Admission Price

Solution to Exercise 76: Parity Bits

212 11 Solutions to Selected Repetition Exercises

Solution to Exercise 79: Universal Product Codes

11 Solutions to Selected Repetition Exercises 213

Solution to Exercise 80: Caesar Cipher

214 11 Solutions to Selected Repetition Exercises

Solution to Exercise 82: Is a String a Palindrome?

Solution to Exercise 84: Multiplication Table

11 Solutions to Selected Repetition Exercises 215

Solution to Exercise 87: Greatest Common Divisor

Solution to Exercise 90: Decimal to Binary

216 11 Solutions to Selected Repetition Exercises

Solution to Exercise 92: Maximum Integer

Solution to Exercise 94: Monty Hall Problem

11 Solutions to Selected Repetition Exercises 217

12Solutions to Selected Function
Exercises

Solution to Exercise 97: Scores and Years

© Springer Nature Switzerland AG 2025
B. Stephenson, The Python Workbook, Texts in Computer Science,
https://doi.org/10.1007/978-3-031-84560-4_12

219

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_12&domain=pdf
https://doi.org/10.1007/978-3-031-84560-4_12
https://doi.org/10.1007/978-3-031-84560-4_12
https://doi.org/10.1007/978-3-031-84560-4_12
https://doi.org/10.1007/978-3-031-84560-4_12
https://doi.org/10.1007/978-3-031-84560-4_12
https://doi.org/10.1007/978-3-031-84560-4_12
https://doi.org/10.1007/978-3-031-84560-4_12
https://doi.org/10.1007/978-3-031-84560-4_12
https://doi.org/10.1007/978-3-031-84560-4_12
https://doi.org/10.1007/978-3-031-84560-4_12
https://doi.org/10.1007/978-3-031-84560-4_12

220 12 Solutions to Selected Function Exercises

Solution to Exercise 99: Median of Three Values

12 Solutions to Selected Function Exercises 221

Solution to Exercise 102: The Twelve Days of Christmas

222 12 Solutions to Selected Function Exercises

Solution to Exercise 106: Center a String in the Terminal Window

12 Solutions to Selected Function Exercises 223

Solution to Exercise 108: Capitalize It

224 12 Solutions to Selected Function Exercises

Solution to Exercise 109: Does a String Represent an Integer?

12 Solutions to Selected Function Exercises 225

Solution to Exercise 111: Is a Number Prime?

226 12 Solutions to Selected Function Exercises

Solution to Exercise 113: Random Password

12 Solutions to Selected Function Exercises 227

Solution to Exercise 115: Check a Password

228 12 Solutions to Selected Function Exercises

Solution to Exercise 118: Arbitrary Base Conversions

12 Solutions to Selected Function Exercises 229

Solution to Exercise 119: Reduce a Fraction to Lowest Terms

230 12 Solutions to Selected Function Exercises

Solution to Exercise 120: Reduce Measures

12 Solutions to Selected Function Exercises 231

232 12 Solutions to Selected Function Exercises

12 Solutions to Selected Function Exercises 233

Solution to Exercise 121: Magic Dates

13Solutions to Selected List Exercises

Solution to Exercise 123: Sorted Order

© Springer Nature Switzerland AG 2025
B. Stephenson, The Python Workbook, Texts in Computer Science,
https://doi.org/10.1007/978-3-031-84560-4_13

235

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_13&domain=pdf
https://doi.org/10.1007/978-3-031-84560-4_13
https://doi.org/10.1007/978-3-031-84560-4_13
https://doi.org/10.1007/978-3-031-84560-4_13
https://doi.org/10.1007/978-3-031-84560-4_13
https://doi.org/10.1007/978-3-031-84560-4_13
https://doi.org/10.1007/978-3-031-84560-4_13
https://doi.org/10.1007/978-3-031-84560-4_13
https://doi.org/10.1007/978-3-031-84560-4_13
https://doi.org/10.1007/978-3-031-84560-4_13
https://doi.org/10.1007/978-3-031-84560-4_13
https://doi.org/10.1007/978-3-031-84560-4_13

236 13 Solutions to Selected List Exercises

Solution to Exercise 125: Remove Outliers

Solution to Exercise 126: Avoiding Duplicates

13 Solutions to Selected List Exercises 237

Solution to Exercise 127: Negatives, Zeros, and Positives

238 13 Solutions to Selected List Exercises

Solution to Exercise 129: Perfect Numbers

Solution to Exercise 133: Formatting a List

13 Solutions to Selected List Exercises 239

Solution to Exercise 134: Random Lottery Numbers

240 13 Solutions to Selected List Exercises

Solution to Exercise 137: Balanced Parentheses and Square Brackets

13 Solutions to Selected List Exercises 241

Solution to Exercise 140: Shuffling a Deck of Cards

242 13 Solutions to Selected List Exercises

Solution to Exercise 143: Count the Elements

13 Solutions to Selected List Exercises 243

Solution to Exercise 144: Tokenizing a String

244 13 Solutions to Selected List Exercises

Solution to Exercise 145: Unary and Binary Operators

13 Solutions to Selected List Exercises 245

Solution to Exercise 149: Generate All Sublists of a List

246 13 Solutions to Selected List Exercises

Solution to Exercise 150: The Sieve of Eratosthenes

Solution to Exercise 151: Normal Magic Squares

13 Solutions to Selected List Exercises 247

248 13 Solutions to Selected List Exercises

14Solutions to Selected Dictionary
Exercises

Solution to Exercise 153: Reverse Lookup

© Springer Nature Switzerland AG 2025
B. Stephenson, The Python Workbook, Texts in Computer Science,
https://doi.org/10.1007/978-3-031-84560-4_14

249

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_14&domain=pdf
https://doi.org/10.1007/978-3-031-84560-4_14
https://doi.org/10.1007/978-3-031-84560-4_14
https://doi.org/10.1007/978-3-031-84560-4_14
https://doi.org/10.1007/978-3-031-84560-4_14
https://doi.org/10.1007/978-3-031-84560-4_14
https://doi.org/10.1007/978-3-031-84560-4_14
https://doi.org/10.1007/978-3-031-84560-4_14
https://doi.org/10.1007/978-3-031-84560-4_14
https://doi.org/10.1007/978-3-031-84560-4_14
https://doi.org/10.1007/978-3-031-84560-4_14
https://doi.org/10.1007/978-3-031-84560-4_14

250 14 Solutions to Selected Dictionary Exercises

Solution to Exercise 154: Two Dice Simulation

14 Solutions to Selected Dictionary Exercises 251

Solution to Exercise 159: Unique Characters

Solution to Exercise 160: Anagrams

252 14 Solutions to Selected Dictionary Exercises

Solution to Exercise 163: Converting from Hexadecimal to Binary

14 Solutions to Selected Dictionary Exercises 253

Solution to Exercise 164: Scrabble.TM Score

Solution to Exercise 165: Birthstones (Again)

254 14 Solutions to Selected Dictionary Exercises

Solution to Exercise 166: Create a Bingo Card

14 Solutions to Selected Dictionary Exercises 255

15Solutions to Selected File and
Exception Exercises

Solution to Exercise 170: Display the Head of a File

© Springer Nature Switzerland AG 2025
B. Stephenson, The Python Workbook, Texts in Computer Science,
https://doi.org/10.1007/978-3-031-84560-4_15

257

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_15&domain=pdf
https://doi.org/10.1007/978-3-031-84560-4_15
https://doi.org/10.1007/978-3-031-84560-4_15
https://doi.org/10.1007/978-3-031-84560-4_15
https://doi.org/10.1007/978-3-031-84560-4_15
https://doi.org/10.1007/978-3-031-84560-4_15
https://doi.org/10.1007/978-3-031-84560-4_15
https://doi.org/10.1007/978-3-031-84560-4_15
https://doi.org/10.1007/978-3-031-84560-4_15
https://doi.org/10.1007/978-3-031-84560-4_15
https://doi.org/10.1007/978-3-031-84560-4_15
https://doi.org/10.1007/978-3-031-84560-4_15

258 15 Solutions to Selected File and Exception Exercises

Solution to Exercise 171: Display the Tail of a File

Solution to Exercise 172: Concatenate Multiple Files

15 Solutions to Selected File and Exception Exercises 259

Solution to Exercise 177: Sum a Collection of Numbers

260 15 Solutions to Selected File and Exception Exercises

Solution to Exercise 179: Remove Comments

15 Solutions to Selected File and Exception Exercises 261

Solution to Exercise 180: Four Word Random Password

262 15 Solutions to Selected File and Exception Exercises

Solution to Exercise 183: A Book with No E...

15 Solutions to Selected File and Exception Exercises 263

Solution to Exercise 184: Names that Reached Number One

264 15 Solutions to Selected File and Exception Exercises

Solution to Exercise 188: Spell Checker

15 Solutions to Selected File and Exception Exercises 265

Solution to Exercise 190: Redacting Text in a File

266 15 Solutions to Selected File and Exception Exercises

Solution to Exercise 191: Missing Comments

15 Solutions to Selected File and Exception Exercises 267

Solution to Exercise 193: Percentage Grades to Letter Grades

268 15 Solutions to Selected File and Exception Exercises

15 Solutions to Selected File and Exception Exercises 269

16Solutions to Selected Recursion
Exercises

Solution to Exercise 196: Total the Values

© Springer Nature Switzerland AG 2025
B. Stephenson, The Python Workbook, Texts in Computer Science,
https://doi.org/10.1007/978-3-031-84560-4_16

271

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84560-4_16&domain=pdf
https://doi.org/10.1007/978-3-031-84560-4_16
https://doi.org/10.1007/978-3-031-84560-4_16
https://doi.org/10.1007/978-3-031-84560-4_16
https://doi.org/10.1007/978-3-031-84560-4_16
https://doi.org/10.1007/978-3-031-84560-4_16
https://doi.org/10.1007/978-3-031-84560-4_16
https://doi.org/10.1007/978-3-031-84560-4_16
https://doi.org/10.1007/978-3-031-84560-4_16
https://doi.org/10.1007/978-3-031-84560-4_16
https://doi.org/10.1007/978-3-031-84560-4_16
https://doi.org/10.1007/978-3-031-84560-4_16

272 16 Solutions to Selected Recursion Exercises

Solution to Exercise 202: Recursive Palindrome

Solution to Exercise 203: Exponentiation

16 Solutions to Selected Recursion Exercises 273

Solution to Exercise 205: String Edit Distance

274 16 Solutions to Selected Recursion Exercises

Solution to Exercise 208: Element Sequences

16 Solutions to Selected Recursion Exercises 275

276 16 Solutions to Selected Recursion Exercises

Solution to Exercise 209: Flatten a List

Solution to Exercise 212: Run-Length Encoding

16 Solutions to Selected Recursion Exercises 277

Index

Symbols
!= (not equal operator), 30
< (less than operator), 30, 36
<= (less than or equal operator), 30, 36
> (greater than operator), 30, 36
>= (greater than or equal operator), 30, 36
π , 21, 65
* (multiplication operator), 4
** (exponentiation operator), 4
+ (addition operator), 4
+ (concatenation operator), 12
- (subtraction operator), 4
/ (division operator), 4
// (floor division operator), 4
= (assignment operator), 4, 5
== (equal operator), 30, 36
(comment character), 8
% (modulo operator), 4

A
Acceleration, 23
Access mode, 142
Ace, 115
Admission, 64
Algorithm, 3, 25, 66, 67, 70, 71, 112, 115,

118–120, 122, 168, 172, 177, 179, 180
Alphabet, 39, 67, 157, 173
Anagram, 135, 136
and operator, 34, 35
Anonymous Gregorian algorithm, 25
append method, 101, 104
Append mode, 142, 145, 151
Approximation, 65, 67, 176
Area, 16, 21, 23, 24

Argument, 5, 76–78, 83, 84, 101, 104, 107, 129

Argument vector, 146
argv, 146
Armstrong number, 71
Ascending Order, 103
ASCII, 93, 141
asctime function, 25
Assertion, 83, 84, 106, 131
assert keyword, 83
Assignment operator, 4, 5, 13, 98, 104, 126,

130
Astrology, 45
Average, 62, 110
A Void, 157

B
Baby names, 158
Bankers’ rounding, 6
Banknote, 42
Base case, 165–168, 171
Binary, 71, 137, 173
Binary file, 141
Binary operator, 117
Binary search, 175
Bingo, 138, 139
Body mass index, 26
Body (of a function), 75
Body (of a loop), 55, 57
Body (of an if statement), 29, 30
Boolean expression, 29, 34
Boolean operator, 34
Bread, 28
Bug, 13

© Springer Nature Switzerland AG 2025
B. Stephenson, The Python Workbook, Texts in Computer Science,
https://doi.org/10.1007/978-3-031-84560-4

279

https://doi.org/10.1007/978-3-031-84560-4
https://doi.org/10.1007/978-3-031-84560-4
https://doi.org/10.1007/978-3-031-84560-4
https://doi.org/10.1007/978-3-031-84560-4
https://doi.org/10.1007/978-3-031-84560-4
https://doi.org/10.1007/978-3-031-84560-4
https://doi.org/10.1007/978-3-031-84560-4
https://doi.org/10.1007/978-3-031-84560-4
https://doi.org/10.1007/978-3-031-84560-4
https://doi.org/10.1007/978-3-031-84560-4

280 Index

C
Caesar Cipher, 66
Capital city, 136
Capitalize, 91, 156
Cards, 115, 116
cat, 153
Cell phone, 50, 133
Celsius, 22, 23, 26, 27, 62
Chemical element, 152, 157, 178
Chess, 43
Circle, 21
close method, 142, 151
Clubs, 115
Coin, 20, 73, 177
Collatz conjecture, 69
Command line argument, 146, 147
Comments, 8, 155, 160
Common ratio, 80
Compression, 181
Computer program, 3
Concatenate, 12
Concatenation, 146, 153, 156
Condition, 29–32, 55
Consonant, 39, 112
Coordinate, 63, 114
Crash, 14
Cup, 95
Cylinder, 22

D
Date, 25, 42, 44, 45, 51, 89, 95
Day, 24, 25, 39, 42, 44, 51, 88, 89, 95
Debugging, 13, 35, 59, 82, 105, 130, 150, 170
Decibels, 40
Decimal, 71, 94, 173
Decision making constructs, 29
Deck of cards, 115, 116
Decode, 67
Default value, 78, 176
def keyword, 75, 160
Denominator, 94
Deposit, 17
Diamonds, 115
Dice, 69, 132
Dictionary, 125–127
Difference, 19
Digit, 27, 51, 66, 71, 91, 93, 94, 96, 117, 134,

137, 173
Dime, 20, 178
Discount, 28, 62
Discriminant, 47

Distance, 20, 21, 23, 63, 86
Division Algorithm, 71
Dog years, 38

E
Earth, 20, 50, 121
Earthquake, 46
Easter, 25
Edit distance, 177
Element, 98, 101, 102, 106, 116
Empty dictionary, 125
Empty list, 97
Encode, 67, 133, 181
Encryption, 66, 154
End of line, 145, 146
Equilateral, 40, 90
Eratosthenes, 121
Escape sequence, 146
Euclid’s algorithm, 172
Even parity, 64
Exception, 148–151
except keyword, 148–150, 152
Exponential growth, 168
Exponentiation, 4, 175
Exponentiation by squaring, 175

F
Fahrenheit, 23, 27, 37, 62
False, 29, 34
Fibonacci number, 167
File, 141–143
FileNotFoundError, 148, 149
File object, 142, 143
Fizz buzz, 65
Flattening a list, 179
float function, 6
Floating-point number, 6, 9
Floor division, 4
Football, 52
for loop, 56–58, 98, 128
Frequency, 41, 49
Frequency analysis, 154
F-string, 9, 10
Fuel efficiency, 19
Function, 5, 75, 76
Function definition, 75

G
Gadsby, 157
Geometric sequence, 80
George Boole, 29

Index 281

Grade points, 48, 63, 155
Greatest common divisor, 70, 95, 172
Gregorian calendar, 25, 89

H
head, 152
Heads, 73
Hearts, 115
Heat capacity, 22
Height, 21–24, 26, 76
Hexadecimal, 94, 137
Holiday, 42
Horoscope, 45
Hour, 24
Hypotenuse, 18, 85

I
Ideal gas law, 23
if-elif-else statement, 31, 32
if-elif statement, 33
if-else statement, 30, 31
if statement, 29
import keyword, 8, 82
Index, 12, 98, 100, 106
IndexError, 106
index method, 103
in operator, 103, 127
Infinite loop, 61, 151
Infinite series, 65
Infix, 118
Input, 3, 6, 142, 146
input function, 6
insert method, 101
Integer, 5, 6
Interest, 18
int function, 6
is keyword, 83
Isosceles, 40

J
Jack, 115

K
Kelvin, 23, 27
Key, 125, 126
KeyError, 130
Key-value pair, 125, 126
King, 115

L
La Disparition, 157

Latitude, 20
Leap year, 39, 50, 51, 89
len function, 12, 99, 127
Letter grade, 48, 63, 155, 161
Library of Alexandria, 121
License plate, 51, 93
Linear growth, 168
Linear search, 174
Line number, 144, 153
Line of best fit, 114
Lipogram, 157
List, 97
Local variable, 79
Logic error, 15, 37, 38, 60, 84, 106, 131, 151,

171
Longest word, 154
Longitude, 20
Loonie, 20
Loop, 55
Lottery, 111

M
Magic date, 95
Magic square, 121, 122
Mailing address, 16
main function, 81, 82
Mathematical operators, 4
math module, 8
Maximum, 72
Maximum recursion depth, 171
Median, 86
Method, 101
Minute, 24
Module, 8, 82
Modulo, 4
Money, 18, 41
Month, 25, 39, 42–44, 51, 89, 95, 137
Morse code, 133
Multiplication table, 68
Music note, 40
Mutually exclusive, 31

N
NameError, 37, 60, 131, 151
NATO phonetic alphabet, 173
Nested if statement, 33
Nested list, 179
Nested loop, 58
Newton’s method, 67
Nickel, 20, 63, 178
None keyword, 84

282 Index

not operator, 34
Numerator, 94

O
Octave, 40
Odd parity, 64
Off-by-one error, 61
open function, 142
Open problem, 70
Order of operations, 5
Ordinal date, 89
Ordinal number, 88
or operator, 34, 35
Output, 7, 141, 145

P
Page range, 96
Palindrome, 67, 68, 110, 175
Paragraph, 162
Parameter, 76–78, 84, 104, 129
Parity, 64
Password, 93, 94, 156
Penny, 20, 63, 178
Perfect number, 109
Pig Latin, 111, 112
Pizza, 19
Playing cards, 115
Polygon, 24, 63
pop method, 102, 104, 127
Postal code, 134
Postfix, 118, 119
Precedence, 5, 92, 119
Pressure, 23, 27
Prime factorization, 70
Prime number, 70, 92, 120, 121
print function, 7, 97, 126, 142
Product, 19, 68
Programmer, 3
Programming, 3
Programming language, 4
Prompt, 6
Proper divisor, 109
Proton, 157
Province, 134
Punctuation mark, 109, 110, 112, 136, 154,

157, 159
Pythagorean theorem, 18, 20, 85
Python, 4

Q
Quadratic equation, 47

Quarter, 20, 178
Queen, 115
Quotient, 4, 19

R
radians function, 20
Radiation, 49
Radius, 20–22
Random, 52, 69, 72–74, 93, 94, 111, 115, 136,

138, 139, 156
range function, 57, 98, 99, 121
read method, 143
Read mode, 142
readline method, 142–144
readlines method, 143
Recursive case, 165, 166, 168
Recursive function, 165
Redact, 160
Relational operator, 30
Remainder, 4, 19
remove method, 102
Repeated word, 159
return keyword, 79, 80, 104, 130
Reverse lookup, 132
reverse method, 103
Reverse order, 107
Richter scale, 46
Roman numeral, 173
Roulette, 52
Rounded, 63
round function, 5
Rounding half to even, 6
rstrip method, 145
Run-length encoding, 181
Runtime error, 14, 36, 60, 83, 106, 130, 131,

151, 171
Rural, 135

S
Scalene, 40
Scrabble™, 137
Season, 44
Second, 24
Sequence, 69, 80, 167, 178
Shape, 39
Shipping, 86
Shuffle, 115
Siamese method, 122
Sieve of Eratosthenes, 120
Slicing a string, 13
Sorted, 27, 116

Index 283

sorted function, 107
sort method, 103, 104, 107
Spades, 115
Spell checker, 159
Spelling alphabet, 173
Sphere, 21
Spiral, 28
sqrt function, 8, 79
Square root, 8, 67, 176
str function, 145
String, 6, 12, 90, 145
String concatenation, 12, 146
String length, 12
String similarity, 177
Sublist, 120
Sum, 17, 19, 27, 71, 80, 109, 121, 155, 165
Swap, 102, 115
Syntax, 4
Syntax error, 13, 36, 59, 83, 105, 130, 150, 171
SyntaxError, 14, 36, 83, 105, 130
sys module, 146

T
Tablespoon, 95
tail, 153
Tail of a string, 168
Tails, 73
Tax, 17, 50
Taxi, 86
Teaspoon, 95
Temperature, 22, 23, 26, 27, 37, 62
Text file, 141, 144
Text message, 50, 133
Time, 24
time module, 25
Tip, 17
Token, 117, 119

Toonie, 20
Triangle, 18, 23, 24, 40, 85, 90
True, 29, 34
Truth table, 34
try keyword, 148, 150
Twelve Days of Christmas, The, 88
TypeError, 37, 106, 131
Type function, 83

U
Unary operator, 117, 118
Urban, 135
UTF-8, 141

V
Value, 125, 126
values method, 127, 128
Variable, 4, 79
Visible light, 49, 50
Volume, 21–23, 95
Vowel, 39, 112, 163

W
Wavelength, 49
Week, 51
while loop, 55, 56, 58, 61, 100, 129, 143
Width, 76
Wind chill, 26
write method, 145
Write mode, 142, 145, 151

Y
Year, 25, 39, 45, 51, 86, 89, 95, 158

Z
Zodiac, 45
Zoo, 64

